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Abstract—Collision detection algorithms are used to detect
when virtual objects collide with one another and calculate the
results of these collisions. These types of algorithms are, typically,
critical real-time calculations needed for applications such as
simulation, tolerance checking, and video games. In this work,
we present an implementation of the smallest piece of a collision
detection pipeline implemented on Intel’s Heterogeneous CPU-
FPGA Platform. This platform includes both an FPGA and CPU
that allows real-time processing of fine grained applications such
as collision detection. We present a heterogeneous implemen-
tation that uses the FPGA to accelerate a particular collision
detection stage as an accelerated part of a complete collision
detection pipeline on a real system to demonstrate how collision
detection can benefit from co-processing even in its worst-case
implementation. We believe as Intel continues to integrate FPGAs
with processors on a single die that algorithms like these need
to be both optimized and open sourced to the general computing
community1 so that they can be included and studied as part of
a full simulation system where the GPU is dedicated to graphics
and the CPU cores to world management. In our case, our results
show a speedup of 14.81% with the FPGA as compared to a
CPU only implementation. The importance of this result is that
it demonstrates that even the worst implementation in terms of
data communication to computation ratio for collision detection
on a real heterogeneous system can be used as an accelerator,
and more importantly, this is the starting point for researchers
to investigate where these algorithms should be located in the
system whether on the traditional CPU cores, the GPU, or a
co-processing FPGA.

I. INTRODUCTION

Hardware accelerators or co-processors are being used as
alternatives for high-performance computing [1], [2]. Recently,
industry vendors such as Microsoft, Intel, Xilinx, and IBM
have released heterogeneous CPU-FPGA platforms that show
promising results in terms of performance and energy effi-
ciency. Intel is working on a commercial CPU-FPGA platform
that integrates both CPU and FPGA on the same die increasing
the bandwidth available for these devices. Because of these
trends, various algorithms that, typically, would run on a CPU
should be examined in terms of being accelerated and included
as pieces of larger computation systems. At the least, system
designers need to understand the trade-offs of putting these

1https://github.com/fredyamalves/Collision-detection-for-a-CPU-FPGA-
heterogeneous-System

algorithms on the ever increasing heterogeneous computing
choices that include CPUs, Graphics Processing Units (GPUs),
and FPGAs.

One domain, video games, has pushed capabilities of PCs
including the invention of the GPU and the performance of
CPUs and memory. This suggests that algorithms used in
games should be explored as viable implementations on a co-
processing FPGA as these new computation units become a
part of modern systems. For this reason, our work looks at
accelerating collision detection algorithms that detect when
virtual objects collide and then calculate the result of these
collisions implemented on a real system. These algorithms
are not only employed in games, which are virtual simula-
tions of game worlds, but are used in other areas such as
general physics simulation, manufacturing simulators, medical
procedures training applications, virtual reality, etc [3]. For
instance, General Electric continues to develop technologies
to implement virtual twins where a real product has a virtual
twin that can be used to observe, test, diagnose, and help in
design. These “Mirror Worlds” require sophisticated compu-
tation including collision detection [4].

In this work, we present a hardware accelerator for spheres
collision detection on an FPGA as part of the Intel CPU-
FPGA platform. We use the Open Dynamics Environment
(ODE) [5] as the open-source engine that includes a collision
detection pipeline (CDP), and this tool is used by a wide
variety of games and simulators. Our FPGA implementation
uses a many-processing units approach to process collisions in
parallel in order to improve the efficiency of these calculations
and implements the finest grained piece of the CDP. We tested
our design on the Intel CPU-FPGA platform and collected
results showing a speedup of 14.81%. Though this number
is not large or comparable to other implementations, the
importance of this result is, one, it represents the finest grain
of a CDP meaning we can expect improvements as we coarsen
this, and two, this is the first implementation of collision
detection on a heterogeneous system where shared memory
and synchronization are considered.

The contribution of this work is twofold: First, we imple-
ment a heterogeneous implementation to perform fine-grained
sphere collision detection in parallel using the Intel CPU-
FPGA platform. Second, we analyze the memory/processing
bottlenecks of our implementation in terms of performance.



Moreover, we have made our accelerator source code available
for the community to reproduce the results and use our design
as a starting point to implement similar applications and decide
where these calculations should be done. Our results suggest
that the FPGA will suffice as a useful co-processor for even
the finest-grained collision detection calculations, and these
results will only improve as both the CPU-FPGA system
is more tightly integrated in terms of memory access and
communication and more course-grained calculations in the
collision detection are moved onto the FPGA.

II. RELATED WORK

Many researchers have implemented collision detection al-
gorithms. For a good introductory review of collision detection
and the collision detection pipeline (CDP), we suggest chapter
2 of Weller’s book [6]. The CDP consists of two major
steps called a “broad phase” and a “narrow phase” where the
narrow phase can be further split into finer detailed calculation
steps. The purpose of the CDP is to filter out non-collisions
between objects with coarse calculations that save computation
resources, and finer more costly calculations are done after
filtering out non collisions leaving only objects that have a
high potential to collide. In this work, we look at implementing
the finest-grained portion of the CDP as implemented in the
ODE software.

Some example work of improvements to collision detection
on various computational devices include the following. Wu
et al. [7] created an algorithm on an FPGA to solve linear
programs and used it to improve the speed of collision
detection algorithms, this work pre-loads data with memory
initialization files to generate results meaning all of the data
needed for the calculations is already stored in memory before
experimental timing is started. In Raabe et al. [8], a collision
detection design for FPGAs uses fixed-point arithmetic and
bounded error, and the focus is on saving space in order to
improve area overhead. Their results have a speedup, and again
the data is pre-loaded. Works such as [9], [10] use a GPU-CPU
based system to improve collision detection algorithms. More,
recently, a paper by Zhang et. al. showed an 8x improvement
in speed to collision detection on an FPGA where the entire
system is implemented on the FPGA [11].

We note that our work differs, significantly, from this
literature in the following key ways: 1) We do not make use
of pre-loaded data and take into account the shared memory
access time in our speedup results, which is left out in
all existing FPGA implementations and sometimes in GPU
implementations; 2) We implement the most fine-grained piece
of the CDP on a CPU-FPGA platform as a demonstration
that even the finest calculations in the CDP will provide some
benefit when co-processed by the FPGA. In addition to these
key differences, our system is compared to a single core CPU
implementation and not to a GPU implementation. The reason
for this is we are looking at the benefit of implementing
collision detection on a co-processor where in applications
such as video games the GPU is not available for significant
computations as it is already dedicated to its’ primary purpose.

Therefore, our goal is not just acceleration of the application,
but evidence that the FPGA co-processor is a viable target for
these algorithms and there is room for significant improvement
of collision detection in these real-systems. This type of
work is needed on a larger scale so that system designers
can determine where various computation activities should be
executed according to trade-offs in speed and power.

III. COLLISION DETECTION HARDWARE ACCELERATOR

In this Section we provide details of our collision detection
hardware accelerator.

A. Collision Detection Algorithms

The ODE software includes a collision detection engine
that allows for re-implementation of its calculating methods.
This engine uses information about the shape and position of
each object in the world. The collision detection algorithm is
divided in 3 steps as seen in Figure 1 including where the
calculations are performed in our system:

• AABB collision detection: The ODE on the CPU exe-
cutes the Axis-Aligned Bounding Box (AABB) collision
detection algorithm, an AABB is basically a box which
describes one or a set of geometric figures, in the case of
a sphere, the AABB is a cube inside it as seen in figure
2, this step only identifies which objects are potentially
colliding and then it sends the objects to their specialized
collision detection algorithms, in our case it sends the
spheres which are likely to collide to the Spheres collision
detection accelerator on the FPGA.

• Sphere collision detection: The spheres are processed
on the FPGA and the collision results are sent back to
the CPU, it is important to point out that this is a fine
grain step, the processing time is low when compared
to the amount of data needed to compute it, the whole
collision detection algorithm is considered coarse grain
as it generates a big amount of intermediate data when
compared to the inputs, the number of collision tests
could go up to 2N where N is the amount of spheres
on the virtual world.

• Virtual world state update: This step is processed on the
CPU and it is responsible for fetching all the collision
results and, through physics computations based on the
collision vector resultants, it updates the virtual objects
positions for the next simulation step.

Algorithm 1 starts by calculating the collision depth and
storing it in d, based on the result three different possible
cases occur: 1) Fake collision: Collision does not happen; 2)
Grazing collision: bodies barely contact each other; 3) Real
collision: Bodies collide with each other and the collision has
a depth. Note that grazing collisions almost never happen and
we focus our attention on the real collisions.

In our design, we have re-implemented the method for
collision detection between spheres - (Real Collision). The
inputs are the position of two spheres in a space and their
respective radius. The output is a contact point. The spheres
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Fig. 1. Collision detection algorithm steps.

Fig. 2. Sphere AABB.

representation and the resulting contact points use, respec-
tively, 4 and 7 32-bit IEEE 754 floating points numbers. We
identify parallelizable calculations, dividing these calculations
into 5 stages as seen in Algorithm 2, where each stage is
executed sequentially but for multiple possible collisions in
parallel. We call the parallelized version of this the Accelerator
Function Unit (AFU), which we implement on the FPGA. For
the real collision execution flow, we execute 26 floating point
operations per collision.

B. Accelerator Datapath

The AFU is implemented as the co-processor on the FPGA
to calculate collision detections as one piece of the entire
system. Figure 3 shows the larger system in which the ODE
software is executed on the CPU, and data is transferred

Algorithm 1 Spheres collision detection algorithm.
d← DCALCPOINTSDISTANCE3(p1,p2)
Case 1: Fake Collision
if d > (r1 + r2) then return 0
end if
Case 2: Grazing Collision
if d ≤ 0 then

cPos← p1
cNormal← (1, 0, 0)
cDepth← r1 + r2
Case 3: Real Collision

else
d1← DRECIP(d)
cNormal← (p1− p2) ∗ d1
k ← 0.5 ∗ (r2− r1− d)
cPos← p1 + cNormal ∗ k
cDepth← r1 + r2− d

end if

Algorithm 2 Parallel FPGA collision detection algorithm.
Stage 1 :
d← DCALCPOINTSDISTANCE3(p1,p2)
rsum← r1 + r2
psub← p1− p2
rsub← r2− r1
Stage 2 :
d1← DRECIP(d)
d > rsum
r2− r1− d
r1 + r2− d
Stage 3 :
cNormal← (psub) ∗ d1
k ← 0.5 ∗ (rsub− d)
Stage 4 :
cnk ← cNormal ∗ k
Stage 5 :
cPos← p1 + cnk

in real-time to the AFU on the FPGA for the collision
calculations via shared-memory. Note that the CPU can access
the systems main memory, which the FPGA cannot, and the
shared memory is accessible via a QPI bus.

The AFU is divided into two main components as seen in
Figure 3. First, a Processing Units Controller (PUC) is respon-
sible for handling communication of data between the CPU
and the FPGA via the shared memory as well as synchronizing
when the local FPGA processing units can perform their fine-
grained calculations. Second, the Sphere Collision Processing
Units (SCPUs) can access the loaded data to perform their
respective collision detection calculations.

A handshaking control protocol is implemented on the CPU
and PUC as follows:

1) The simulation step starts with the CPU sending all
the virtual world information to a Source (Src) buffer,



where a collector fetches all the spheres and collision
information that composes the virtual world from this
buffer and stores it in local FPGA memory, which we
call the Virtual World info RAM block (VWIRB). This
is done at each simulation step. The collision information
stored on the VWIRB is used to tell each of the SCPUs
which pair of spheres participates in a collision. The
collision information is stored in 512 bit lines with 32
sphere addresses each, each pair of addresses tells a
SCPU which spheres on the local RAM block are used
on the collision it is supposed to process.

2) The sphere’s information on the VWIRB is replicated
to local RAM blocks which are connected as inputs to
each of the SCPUs, this replication is done once every
simulation step in parallel.

3) Each SCPUs processes its respective collision and indi-
cates when it has completed the collision detection.

4) The PUC collects all the collision information to the
SCPUs and when it is done processing all of them, it sets
a ”done” signal, that the CPU reads, and then, fetches the
results from the destination (Dst) buffer.

5) The CPU can then update the virtual world state, take
new inputs, and start the next simulation step.

FPGA

Processing Units Controller (PUC)

SCPU SCPU SCPU SCPU

Dispatcher CollectorHandshake Controller

Shared memory

Dst Buffer Src Buffer
CPU

Main memory

Fig. 3. Collision detection accelerator system.

C. Intel Heterogeneous CPU-FPGA Platform

We have implemented the collision detection accelerator
using the first version of the Intel CPU-FPGA Platform [12].
The computer used for communication with the FPGA consists
of Xeon Processors E5-2680 v2, its specifications can be seen
in Table I. The CPU is connected to an Altera Stratix V
model 5SGXEA7N1F45C1 FPGA by a 6.4 GT/s Intel QPI
bus, the FPGA specifications are included in Table II. We have
used the Accelerator Abstraction Layer (AAL) framework to
develop our accelerator. AAL allows C/C++ implementations
to manage transactions between the CPU and the FPGA
hardware accelerator.

TABLE I
XEON E5-2680 V2 SPECIFICATIONS

Clock Cache RAM SSD

2.8 GHz 25 mb 96 gb 120 gb

TABLE II
ALTERA STRATIX V MODEL 5SGXEA7N1F45C1 SPECIFICATIONS

Clock DSP Blocks Logic Elements Memory bits

200 MHz 256 234,720 52,428,000

The system CPU side is composed of the ODE software and
the AAL application used to communicate with the AFU. The
FPGA side includes the AFU to perform the collision detection
calculations which is implemented via the System Protocol
Layer 2 (SPL2) provided by Intel, which is responsible for
memory address translation since the FPGA uses virtual
addressing.

IV. BENCHMARKS AND MEASUREMENT METHODOLOGY

The AAL framework is service-oriented working with the
concept of transactions. A transaction must be initiated, pro-
cessed and finished. Our speedup results compare the cost of
this transaction with the FPGA as compared to the same trans-
action executed only on a single CPU with the specifications
described in the previous section.

The application processes each set of collision on the AFU
10 times, computing the average execution time. As the path
for executing a specific type of collision is always the same,
we expect that the execution time for a certain amount of
collisions is always similar and the growth in execution time
is linear and proportional to the number of collisions.

Fig. 4. Benchmarks examples.



In order to generate results, we use a set of parameterizable
benchmarks with spheres organized in the form of a diamond.
We define our benchmarks based on the distance between
spheres (dSph) and the maximum height (hMax) for the
diamond in terms of number of spheres. Figure 4 presents two
of these examples. After we create the simulation environment
a force is applied to each sphere in the direction to the center
of the diamond so that they will collide with each other.

V. RESULTS AND DISCUSSION

Our experiments were conducted by executing sets of real
collisions for both ODE and the AFU. We generated 10
benchmark sets varying hMax from 1 to 10 and keeping
dSph equal to 0. For the AFU, we used 16 SCPUs. Table
III shows the FPGA usage to implement both the PUC and 16
SCPUs in terms of logic elements, DSPs, and memory bits.
The design uses almost all the logic fabric and DSPs available
on the FPGA.
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Fig. 5. Execution time for ODE and Intel CPU-FPGA platform.

TABLE III
DESIGN FPGA RESOURCES CONSUMPTION

DSP Blocks Logic Elements Memory bits

224 (88%) 200,844 (86%) 13,600,474 (26%)

Figure 5 presents the execution time for the number of
collisions generated by each benchmark set. The Intel CPU-
FPGA platform is faster than the single CPU when the colli-
sion numbers are greater than 1,000. We reached the highest
speedup of 14.81% when the number of collisions is 4,812
(hMax=10). The average execution time for one collision on
the Intel CPU-FPGA platform platform is 36 ns while for the
ODE running on the CPU is 41 ns. It is important to note
that the Intel CPU-FPGA platform execution time includes a
5 µs overhead due to configuration time. This speedup may
not seem significant, but our heterogeneous implementation is
only performing the finest-grained calculations of the CDP in

this case, and therefore, the cost of transferring all of this data
versus the amount of computation needed is very expensive.
However, this does prove that in a real CPU-FPGA system that
fine-grained CDP implementation can provide a co-processing
speedup, and courser grained implementations of the CDP
should shift the data to computation ratio even further towards
benefiting these systems further even in situations with less
collisions. Similarly, as the communication latency and band-
width between FPGA, CPU, and shared-memory improves as
their dies become more integrated, we should see additional
speedups. Finally, if the FPGA had direct access to the main
memory, we would expect better results.
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Fig. 7. Execution time for ODE and Intel CPU-FPGA platform without
memory access time.

In order to perform a more in-depth study of the Intel
CPU-FPGA platform execution time components, we have
instrumented the design with counters. Figure 6 presents the
memory access and processing times for each benchmark set.
The memory access time is responsible for approximately 48%



of the total execution time while the collision processing is
responsible for 52%. For this Intel CPU-FPGA architecture,
the communication overhead is still a significant computation
cost. It is common in FPGA accelerator papers to consider
that data is pre-loaded in memory and not take in account
the memory access time. In this case, our speedup would
be 43%, for 4,812 collisions. Figure 7 shows the execution
time comparison when the memory access time is considered
instantaneous.

The value of these results and work is a deeper understand-
ing of these heterogeneous systems (which include FPGAs)
and the importance of the computation-to-communication ra-
tio. For the finest grained portion of the CDP, the communica-
tion costs are just, barely, smaller than the parallel computation
benefit, hence the small speedup results. However, as the
granularity of computation is increased for what the FPGA co-
processor does in terms of the CDP, the computation increases
for less or equivalent communication. The question remains
what is the area/resource cost for this additional computation?

One could imagine a scenario where the FPGA maintains
data on the state of the world and only communications are
made between CPU and FPGA on a “miss” scenario or (a
relevant change in the virtual-world) where the communication
is only needed in a cache-like model. In these heterogeneous
systems that include FPGAs, we, the FPGA designers, will
need to leverage lessons learned from the parallel research
community on data distribution and optimization techniques
that have been explored for the last 60 years to maximize the
computation-to-communication ratio while optimizing compu-
tation in terms of resource usage on the FPGA.

VI. CONCLUSION AND FUTURE WORK

In this work, we presented a hardware accelerator imple-
mentation of the most fine-grained part of a CDP. We imple-
mented a case of study with sphere collision detection reaching
a speedup of 14.81% with FPGA proven design running on a
real system that includes shared-memory transfers. The results
show that our design is faster when compared to a high-end
CPU and the FPGA is a realistic accelerator. Our design is
available released as open source. An important general idea
drawn from this work is that even small computational kernels
can get speed improvements as the FPGA and CPU are more
closely integrated, but the quality these results are highly
dependent on the communication-to-computation ratio.

Our results do not approach some of the previous re-
searchers’ results, but we highlight the importance of this
work as it demonstrates a CDP implementation at the finest-
grain can be speed up, and this implementation is on a real
heterogeneous system where memory access and synchroniza-
tion must be considered. Even under these restrictions, our
implementation still improves results, and this suggests that
further pursuits in implementing the courser stages of the CDP
will provide even more benefit. Additionally, this works helps
provide system designers an understanding of what trade-offs
they can expect when implementing algorithms on these types
of heterogeneous systems.

As for future work, we intend to expand our AFU imple-
mentation to other types of collisions detection algorithms and
more course grain portions of the CDP in order to produce a
more efficient accelerated engine. We will also execute the
design in a newer Intel CPU-FPGA platform with increased
integration of FPGA and CPU. We expect with the increased
improvements of these platforms that our implementation will
only become better. Finally, we plan on looking at the energy
consumption of our design as this is another important metric
to consider in the system. At present, our speedup suggests
that the FPGA will consume more energy than the processor,
but as speedup increases we would expect energy to be equal
or even less when collisions are executed on the co-processing
FPGA.
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