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Abstract

We address the problem of providing a single system image
(SSI) on clusters of workstations, based on the Java Virtual
Machine (JVM). Our approach is unique in that the needed
functionality is separated in two layers: a shared virtual
memory (SVM) system, CableS, that is optimized for sys-
tem area networks and provides a standard Pthreads API,
and a multithreaded JVM, Jupiter, that was originally de-
veloped for symmetric multiprocessors (SMPs). We iden-
tify the JVM extensions that are required to deal with Ca-
bleS’s more relaxed memory consistency model, to opti-
mize memory allocation by using private memory where
possible, and to deal with various dynamic resource limi-
tations imposed by CableS. We present a preliminary eval-
uation of the new JVM using the Java Grande benchmark
suite on a 16-processor cluster of PCs interconnected with a
Myrinet network, which (to the best of our knowledge) is the
largest configuration reported to the literature. We find that:
(i) the overhead introduced by SVM-specific extensions is
less than 7% on average and (ii) Jupiter/SVM scales well to
achieve an average speedup of 14 on 16 processors—a sig-
nificantly better speedup than for previous reported work.
Our main contribution is the conclusion that JVM-based
SSIs for clusters do not have to be based on specially de-
signed JVMs but may use JVMs that have been developed
for popular SMP platforms.

Keywords: Clusters of Workstation, Java Virtual Machine
(JVM), Single System Image (SSI), Virtual Shared Memory
(SVM), Scalable Performance.

1. Introduction

Virtual machines that provide higher-level abstractions
of system resources are becoming important as a tool for
separating applications from system characteristics. This is
particularly the case for clusters of workstations that are in-
terconnected with low-latency, high-bandwidth system area
networks. These clusters are gaining acceptance as a plat-
form for supporting applications that require access to scal-
able resources. Yet, the abstractions provided by clusters to
applications tend to be restricted and low-level, hindering
the use of clusters in new applications areas.
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We address this problem by providing a single sys-
tem image (SSI) on clusters of workstation, based on the
Java Virtual Machine (JVM). Java has steadily gained wide
acceptance as a programming language of choice for ap-
plication development, mainly because of its platform-
independence and because of the rich set of classes and
libraries that it provides. Today, there exist several large
server applications that are centered around and/or written
in Java, including IBM’s WebSphere [1], a scalable high-
performance transaction engine for e-business, JigSaw [2],
an advanced web server platform, and Jetty [3], a Java HTTP
server and servlet container. It is natural to explore the use
of clusters to deliver the resources and performance needed
by such large applications.

In this paper, we describe our approach to providing
a JVM-based SSI on clusters. The approach is unique in
that the necessary SSI functionality is provided in two lay-
ers. The bottom layer is the CableS Shared Virtual Memory
(SVM) system [4]. It provides a release-consistency-based
shared address space abstraction and a standard Pthreads
API for applications. This layer essentially provides the illu-
sion of an SMP system that supports Pthreads and a relaxed
memory consistency model. The top layer is Jupiter, an
SMP-based multithreaded JVM [5]. We identify the exten-
sions that are required to support SVM clusters. These in-
clude support for dealing with the release consistency model
provided by CableS, optimizing memory allocation by using
private memory where possible, and dealing with various
dynamic resource limitations imposed by SVM systems.

Our approach has several benefits. First, it enables on
modern clusters the use of JVMs that have been developed
for SMPs. Thus, JVM-based SSIs for clusters do not have
to be based on custom JVMs. It identifies and supports sys-
tem modularity through a clear division of system function-
ality in two distinct layers. Finally, it demonstrates that a
standard Pthreads API [6] is adequate to separate the two
layers, facilitating their independent evolution. Given the
complexity of such systems and in particular the fact that
JVMs require significant effort to develop and optimize, our
work provides a path for leveraging this effort on an impor-
tant architectural platform. In fact, the JVM we use, after
our moderate extensions, supports both SMPs and clusters
without increasing code complexity.

We perform a preliminary evaluation of Jupiter/SVM,
using the Java Grande benchmark suite on a 16-processor
cluster of PCs interconnected with a Myrinet network. Page-
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Figure 1. The overall conceptual structure of Jupiter.

based SVM systems can introduce significant overhead be-
cause of (i) false sharing, (ii) the potential mismatch be-
tween the memory model of Java and SVM, and (iii) modu-
larity, which prevents Java run-time information from being
propagated to, and exploited by, the SVM system. How-
ever, our preliminary evaluation indicates that Jupiter/SVM
scales well, achieving an average speedup of 14 on 16 pro-
cessors. The underlying SVM system provides support for
local caching and replication and alleviates the need to im-
plement complex changes to the JVM. Our experimental
evaluation indicates that the overhead introduced by SVM-
specific extensions is less than 7% when run on a single
SMP without the SVM system, indicating that the same
JVM can be used both on SMPs and clusters with minimal
performance impact.

The remainder of this paper is organized as follows.
Section 2. presents an overview of Jupiter’s architecture and
our shared virtual memory cluster. Section 3. describes the
changes to Jupiter that were necessary to deal with the re-
lease consistency model, private memory allocation, and
limitations of resources. Section 4. presents the results of
our experimental evaluation of Jupiter/SVM. Section 5. de-
scribes related work. Finally, Section 6. provides conclud-
ing remarks and directions for future work.

2. Background
2.1 The Jupiter JVM

Jupiter [5, 7] is a modular and extensible JVM infrastructure
that targets Symmetric Multiprocessors (SMPs) with hard-
ware support for sequential consistency. It is a working JVM
that provides the basic facilities required to execute multi-
threaded Java programs. It has an interpreter and gives Java
programs access to the Java standard class libraries via a
customized version of the GNU Classpath library [8]. It is
also capable of invoking native code through the Java Native
Interface [9] and it provides memory allocation and collec-
tion using the Boehm garbage collector [10]. It currently
has no bytecode verifier, no JIT compiler, though the design
allows for such extensions. The performance of Jupiter’s in-
terpreter is midway between that of Kaffe and that of Sun’s
JDK [5].

The overall conceptual structure of Jupiter is depicted
in Figure 1. In the center is theExecutionEngine, the

control center of the JVM. It decodes bytecode instructions
and determines how to manipulate resources to implement
those instructions. The resources, shown as ovals, include
Java classes, fields, methods, attributes, objects, monitors,
threads, stacks and stack frames (not all of which are shown
in the diagram). The responsibility for managing each re-
source is delegated by theExecutionEngine to a par-
ticular Sourceclass, each shown as a rectangle within the
pie slice that surrounds the resource it manages.

2.2 The CableS SVM system

Our SVM system consists of two software layers that col-
laborate to provide applications with a single system image
with respect to memory, thread management, and synchro-
nization. These layers are shown in Figure 2.

Application Layer

Communication Layer

Communication Library

Interconnection Hardware (Node,
Network Interface, Network

CableS

Protocol/Programming Model

Figure 2. The CableS SVM system Layers.

The lowest layer is the communications layer, and
it is called Virtual Memory Mapped Communication
(VMMC) [11]. It consists of a custom control program for
the Myrinet Network Interface Cards (NIC), an OS driver,
and a user library. VMMC allows a user to directly access
the NIC in a protected manner without having to trap into
the kernel and also to write memory through the network
without interrupting the remote processor.

The next layer up is CableS (Cluster enABLEd
threadS) [4], a page-level shared virtual memory (SVM)
system. CableS relies on GeNIMA [12], which provides
a single address space abstraction on top of VMMC and
implements a Lazy Release Consistency (LRC) memory
model [13, 14].

In LRC (as in other relaxed memory models), accesses
to shared data must be protected with lock acquire and lock
release operations. For the most part, this is also true un-
der the Sequential Consistency (SC) model [15] commonly
implemented in hardware on SMPs. However, under SC it
is possible in a small number of cases, such as flag-based
synchronization, to not use locks. In the LRC modelall ac-
cesses to shared data must be protected with locks. This not
only ensures race-free execution [16], but also guarantees
that local copies of shared memory are properly updated.

GeNIMA uses a software, home-based multiple writer
scheme to reduce the impact of false sharing. Each page is
assigned a home node that collects page updates. When a
processor first writes to a page during a new interval it saves
a copy of the page, called atwin, before writing to it. At
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a lock release operation the releasing processor compares
the current (dirty) copy of the page with the (clean) twin
to detect modifications and records these modifications in a
structure called adiff. On an acquire operation, the request-
ing processor invalidates all pages by consulting the infor-
mation about updated pages received in conjunction with the
acquired lock. The next access to an invalidated page causes
a page fault, and the page fault handler fetches the correct
page version from the home.

CableS provides resource management for memory,
threads, and synchronization through a POSIX threads
(Pthreads) [6] standard API. More specifically, CableS ex-
tends GeNIMA in three respects. First, CableS allows ap-
plications to dynamically create and destroy threads dur-
ing execution. Second, it provides support for dynami-
cally allocating shared memory and for memory placement
(first-touch in the current implementation). Finally, CableS
supports modern synchronization primitives including the
Pthread conditional-wait primitive, mutex/lock primitives,
and barriers.

3. JVM extension for SVM clusters

A JVM that supports an SSI on clusters must provide three
broad sets of functionalities in accordance with the Java
Memory Model (JMM): (i) thread management, including
thread creation, migration, and termination; (ii) thread syn-
chronization, including locks and condition variables; and
(iii) a shared object space that is accessible to all threads.
We provide these functionalities through existing standard
interfaces and, where possible, existing system layers. Thus,
we divide the required functionalities in two layers: CableS,
that provides a single system image with respect to memory
and thread management as well as synchronization support,
and Jupiter/SVM, that we modify to deal with the relaxed
memory model and the limitations imposed by CableS.

This approach eliminates the need for extensive mod-
ifications to the SMP-based JVM. In addition, the under-
lying SVM system provides support for local caching and
replication of data at the page level. This alleviates the
need to implement mechanisms for object sharing and con-
sistency within the already complex JVM. Moreover, the
SVM system provides support for shared memory alloca-
tion and thread management, which alleviates the need for
heap address translation and explicit thread management.
Finally, the SVM system manages important resources, such
as locks, which allows for efficient thread synchronization
to be performed in a de-centralized fashion. All this allows
us to use a JVM that is internally very similar to an SMP-
based JVM. In fact, after our extensions Jupiter/SVM sup-
ports both SMPs as well as clusters of workstations.

Nonetheless, our SMP-based Jupiter relies on sequen-
tial consistency and must be extended to support the more
relaxed consistency model of our cluster. Furthermore, ad-
ditional modifications and optimizations are necessary for
building a practical system. Overall, the related issues can
be classified in three categories: (1)memory consistency,
which arises due to the use of the cluster’s lazy release mem-
ory consistency model; (2)private memory allocationfor
those Jupiter structures that are used exclusively by a single
thread; and (3)limitation of resources, which arise because
of various limitations imposed by SVM systems.We exam-
ine each of these issues in details.

3.1 Memory consistency

The lazy release consistency (LRC) model [13] of the clus-
ter dictates that all accesses to shared data must be pro-
tected by lock acquire and lock release operations. Since
Jupiter is already multithreaded, the majority of accesses to
shared data are already protected by such operations. How-
ever, Jupiter was originally developed for SMPs that mostly
support the sequential consistency (SC) model [15]. This
allows Jupiter to avoid the use of explicit synchronization
operations in the following cases: System thread creation,
Java thread creation, object creation and initialization, and
volatile field accesses.

3.1.1 Argument passing at system thread cre-
ation

Creating a system thread in Jupiter involves invoking the
pthread create call. This call allows for a single value
(a pointer) to be passed to the child thread. This is sufficient
since the pointer may be used to pass an argument structure
that is large enough to hold multiple arguments passed from
the parent to the child. Thus, this structure is shared among
the parent and child threads. A similar technique is used in
many other thread APIs as well.

Under SC this form of sharing does not require any ad-
ditional synchronization. All writes to objects by the parent
thread proceed all reads to the same object by child threads.
This precedence is guaranteed by the fact that child threads
are created by the parent thread after all writes have been
performed.

However, in CableS as well as other SVM systems
that support LRC, the child thread will see the parent up-
dates only if the shared data structure is protected by explicit
synchronization operations. For this reason, the parent and
child threads use a statically-agreed upon lock to protect ac-
cesses to the arguments data structure. Note that this lock
cannot be part of the structure that is passed to the child be-
cause this would create a cyclic dependency between getting
the lock and using the lock.

In our implementation, we employ a single system-
wide global lock that is used by all threads to protect ac-
cesses to parameter structures. A parent thread acquires and
releases this lock when writing the arguments to the struc-
ture. Each child thread uses the same operations when read-
ing the arguments. The use of a single global lock for thread
creation implies that at any time, only one thread can pre-
pare and read arguments. Multiple threads attempting to do
so at the same time must serialize, even though their prepa-
rations of arguments are completely independent of one an-
other. Although, one can use a pool of initial locks for this
purpose, we find that a single lock is adequate. The ad-
ditional overhead is negligible mainly due to the fact that
thread creation already incurs high overhead in SVM sys-
tems [4].

3.1.2 Object initialization at Java thread cre-
ation

A Java thread can potentially access any class or object that
its parent has initialized; when a JavaThread object is cre-
ated, its parent may initialize fields in the child object with
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references to any of the fields, objects, or classes of the par-
ent. Thus, the child thread object may contain references to
data that was created and/or modified by its parent before the
child is created, and this data is shared between the parent
and the child. As before, when using sequential consistency,
such data is automatically visible to the child thread upon its
creation because of the sequential consistency model. How-
ever, under CableS and LRC we must ensure that updates
to such objects are explicitlyreleased by the parent and
acquired by the child thread.

It is important to note that this issue arises only at
thread creation time. The parent and child thread may pro-
ceed to concurrently access shared fields. This happens ei-
ther through synchronized methods or through unprotected
access to object fields. In the former case, the correspond-
ing monitor ensures that values of shared data are updated
for each thread. In the latter case, there is no guarantee of
data updates, but this is consistent with the JVM specifica-
tion [17].

To guarantee that object modifications are visible by
the child thread, the parent thread uses a pair of lock/unlock
operations with an empty critical section right before cre-
ating the child thread. The child thread uses a similar pair
before starting execution. These pairs of operations are per-
formed on the same lock variable. Another approach would
be to useacquire/release primitives available in the
CableS system, however since this issue arises only at thread
creation time, which is less performance critical, we use the
more portable calls to lock synchronization operations.

3.1.3 Java thread termination

The Java Memory Model [17, 18] states that, when a Java
thread terminates, it has to flush all modified variables to
main memory. Under sequential consistency, there is no
need to take direct action when a thread terminates; mem-
ory is updated automatically. However, under CableS and
LRC, while it is possible to have CableS automatically force
a memory update upon the termination of a system thread,
this is not a solution from which all SVM applications could
benefit, and thus, was not implemented. For this reason, it
is necessary to introduce a mechanism for forcing the mem-
ory system to flush the memory contents to the other sys-
tem nodes. Thus, we extend Jupiter to use an explicit call,
svm flush memory, provided by CableS. This call al-
lows memory updating on demand and is invoked before the
system thread terminates and after all Java code has com-
pleted its execution in the terminating thread.

3.1.4 Volatile fields

The Java Language Specification [19] states thatvolatile
fields must reconcile their contents in memory every time
they are accessed. Furthermore, the operations on volatile
fields must be performed in exactly the same order the
threads request them. In the multithreaded Jupiter, it was not
necessary to take any special actions on accesses to single-
word volatile fields because of sequential consistency. How-
ever, all cluster accesses to such fields have to be protected
by explicit lock synchronization operations. When another
thread requires access to a volatile field, it is guaranteed that
it will see all previous updates.

3.2 Private memory allocation

The use of memory in shared memory clusters requires
special attention for two reasons. First, access to remote
memory incurs high overhead, regardless of how optimized
the base communication system is. For this reason, shared
memory protocols try to avoid accessing remote memory, by
extensive caching and replication of shared pages. Second,
the 32-bit address space of the systems we use (and are also
used in most clusters today), imposes a limit of 4 GBytes to-
tal address space. Consequently, and unlike SMP systems,
there is a need to perform careful allocation of the inter-
nal JVM data structures and assign to shared memory only
what is absolutely necessary. The rest of the data structures
that are essentially private to each thread, can reside in pri-
vate thread memory throughout execution. Furthermore, de-
pending on the implementation of the underlying SVM sys-
tem, private memory allocation may result in performance
benefits as well. The Jupiter modules and data structures
that can benefit from such private memory allocation are:

• The thread stack. In Jupiter, a thread has an inde-
pendent opcode interpreter, with its own stack, which
stores the state of Java non-native method invocations.
Thus, the stack always remains private to a thread, and
can be allocated in private memory. Note that the stack
itself may contain references to shared objects, but in
itself is private.

• The native stack and cache. When the operating system
creates a new native thread, it provides a stack that the
thread uses for native method invocation. This stack is
also private to the thread and can be allocated in private
memory. Jupiter allows the call to native methods to
use this same stack. Furthermore, all native methods
that are accessed from a Java thread are resolved and
kept in a cache of method bodies, indexed by method
name. Since calls to native methods are local, the cache
is also local to the thread and can be allocated in private
memory.

• Thread handler. In Jupiter, threads are managed in the
same way as other resources; they have a correspond-
ing Source class,ThreadSource. In the current de-
sign, a single instance ofThreadSource is created
for each thread in the system, which remains private to
each of them, and may be allocated in private memory.
Also, in Jupiter, each thread only needs to be able to
identify its children and wait for their completion. A
supporting data structure used for this purpose is pri-
vate to each thread, and therefore, can be stored in pri-
vate memory as well.

• The bytecode interpreter. Each thread contains a sepa-
rate bytecode interpreter (ExecutionEngine). This
object has a single instance for each thread, which is
completely independent of others and thus, makes it
possible to allocate it in private memory.

• The class parser. No information regarding the pars-
ing of a class is shared among threads. Thus, the data
structures used by the parser can be allocated in private
memory. It is important to note that while these struc-
tures are private, Jupiter’s internal representation of the
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class must be stored in shared memory, since this rep-
resentation is shared.

We extend Jupiter’s memory allocation infrastructure
to allow the allocation of private and shared memory.Mem-
orySource is the current module responsible for memory
allocation. We replace it with a version that provides two
types of memory allocation objects: (i)malloc-based for
private memory and CableSsvm-malloc-based for glob-
ally shared memory. Themalloc-based objects are then
used in each of the above cases to allocate the correspond-
ing objects in private memory.

3.3 Limitation of resources

CableS and most SVM systems impose various limitations
on the use of system resources. There are two reasons for
these limitations: First, there are certain restrictions im-
posed by the underlying platforms, which are not important
for smaller systems, but become important in modern clus-
ters. Second, SVM systems use resources internally for their
operation. The most important limitations are:

First, the available virtual address space. The x86-
based processors used extensively today provide a 32-bit
virtual address space. Moreover, Linux limits this address
space to 2 GBytes by reserving portions of the address space
for internal use1. Thus, the total shared address space can-
not exceed this maximum. Furthermore, CableS [4] re-
quires that shared pages be mapped twice in the virtual ad-
dress space for managing transparently update propagation
of modified data. Thus, the final address space available to
the JVM is about 1 GByte. Similar limitations are imposed
by other efficient SVM systems as well. Although, this is-
sue will be resolved with 64-bit processor architectures and
64-bit extensions to existing processor architectures, today
it remains an important limitation. Our technique of opti-
mizing allocation of internal JVM structures by using pri-
vate memory makes it possible to mitigate the impact of this
limitation on user programs.

Second, in many cases, to reduce synchronization
overheads modern clusters provide support for lock op-
erations in the communication subsystem. For instance,
VMMC provides simple support for locks that is used by
GeNIMA and CableS. This results in a limit in the number
of locks that user programs can use, mainly based on the
amount of memory that modern network interfaces incorpo-
rate. Currently, this limit in our system is a few thousand
locks and condition variables. Although this is sufficient for
most cases, it may result in false sharing of locks.

A more important limitation of modern SVM systems
is that they perform garbage collection of internal data struc-
tures at global synchronization points (barriers) only. Each
synchronization point in an SVM system defines a new in-
terval for which various metadata is maintained. For in-
stance, the pages that have been updated during an in-
terval are recorded internally. These data structures are
garbage collected at barriers, which is sufficient for scien-
tific type workloads that use global synchronization exten-
sively. However, Pthreads only provide point-to-point syn-
chronization primitives, which imposes a significant limita-

1This can be extended to 3 GBytes with appropriate Linux kernel re-
configuration.

2-way cluster node 4-way SMP
CPUs 2 x PentiumII 4 x Xeon

400MHz 1.4GHz
HT disabled

L1 cache 16KB Icache 12KB Trace cache
16KB Dcache 8KB Dcache

L2 cache 512 KB 512 KB
Front bus speed 100MHz 400MHz
Memory size 512 MB 2 GBytes
Linux kernel 2.2.16-3smp 2.4.18.-4smp
Ethernet 100 MBit 100 MBit
Myrinet M2M-PCI64A-2 N/A

Link speed 2 x 1.28GBits/s
NIC processor Lanai7 66MHz
Board memory 2MB

Table 1. Configuration of our platforms.

tion. Currently, node memory is adequate for a few hundred
thousand intervals between barrier invocations.

We deal with this issue by (i) optimizing internal lock
use and (ii) by introducing a nativebarrier primitive that
does not rely on high-level, point-to-point synchronization
provided by Pthreads but rather uses directly a more efficient
barrier primitives provided by CableS. It is important to note
that both of these optimizations are necessary for perfor-
mance reasons as well. However, it is true that they impose
limitations on JVM implementations that do not necessar-
ily target performance. Finally, we should note that SVM
protocol extensions to perform garbage collection at point-
to-point synchronization would be an important addition to
support certain classes of applications and thus, constitute
an interesting direction for future work.

4. Experimental evaluation

In this section, we present the results of our evaluation of
the performance of Jupiter/SVM. We first describe the plat-
forms, benchmarks, and methodology we use for the evalu-
ation, then we present 3 sets of results. The first set demon-
strates the scalability of Jupiter/SVM up to 16 processors.
The second set indicates that the overhead of the extensions
made to Jupiter is not significant. Finally, the third set quan-
tifies the overhead of using software-based shared memory.

4.1 Platforms and methodology

We use two platforms in our evaluation: a 16-processor
cluster and a 4-processor SMP. The cluster consists of 8
dual processor PCs (each referred to as a node), for a total
of 16 processors. The configurations of the two platforms
are summarized in Table 1. The software components de-
scribed earlier in Section 2.2 are used to provide shared vir-
tual memory and thread support; the Linux kernel is mod-
ified to accommodate these components. The Jupiter and
Jupiter/SVM JVMs are each compiled on both platforms
with GNU gcc 2.95.3 20010315 (release) at-O3 and linked
to ClassPath Version0.03. All source code modules of
each JVM are combined into a single compilation unit to
facilitate function inlining [20].
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We use the Java Grande multithreaded applications
benchmark suite [21, 22]. We are also able to run all
the SPECjvm98 benchmarks. However, they are single-
threaded applications, with the exception ofraytrace and
mtrt, which just callsraytrace. Since a program with
a similar function is part of Java Grande (RayTracer), we
opt not to report on the performance ofraytrace.

The Java Grande benchmarks provide two standard in-
put data sets, small-sized (A) and mid-sized (B). Some in-
clude a large-sized input set (C), but we restrict our evalua-
tion to sizesA andB. The number of threads used for each
application is always the same to the number of processors
on the test platform. For the most part, the benchmarks ex-
ecute unmodified on Jupiter/SVM. However, in some cases
it was necessary to make minor modifications:

• LUFact, SOR, MolDyn and RayTracer use
application-level barriers that are written in Java and
are inefficient. We replace calls to these barriers with
calls to the more efficient native cluster barriers.

• Crypt, SOR, SparseMM andMonteCarlo use the
standard ClassPath random number generator to gen-
erate random values before parallel execution. This
generator uses asynchronized method, and thus,
locks, which are a limited resource on our system. To
reduce the use of locks, we replace the random num-
ber generator with a compatible version with nosyn-
chronized methods.

• Since CableS does not yet support sharing of internal
operating system handles the I/O operations inMon-
teCarlo are replaced with a class that stores the nec-
essary values.

Furthermore, we do not report the performance of
crypt because it creates many threads that are short-lived.
These threads do not run in parallel in a coordinated fash-
ion and given the high overhead of thread creation on our
cluster platform, threads finish executing before all threads
are created. Thus, they are allocated to a small number of
processors, making the speedup an inappropriate metric for
system scalability. Although other metrics, such as system
throughput could be used instead, this is beyond the scope of
our work.MonteCarlo andMolDyn exceed the dynamic
resource limitations imposed by CableS in synchronization
intervals for input sizeB. Thus, we do not report on their
performance for this data size on the cluster.

We measure all execution times using thetime util-
ity. These times are total execution times and they reflect the
times experienced by the user. We also measure the bench-
mark time for each benchmark, as reported by the bench-
marks. This is defined as the time spent in the Java pro-
gram and includes initialization2, Java thread creation, par-
allel section execution, and Java thread termination. Thus,
the difference between the execution time and the bench-
mark time reflects the cost of CableS and JVM initialization.
We report the average execution time and benchmark time
of each benchmark, which are calculated for each bench-
mark as the arithmetic mean of 5 independent runs of the
benchmark. All times are reported in seconds.

2Series, LUFact, SOR, andSparseMM exclude data initialization
from benchmark time.

4.2 SVM-related instrumentation overhead

We measure the overhead of the extensions made to Jupiter
to enable its execution on SVM clusters that support a
more relaxed consistency model by comparing the execu-
tion times of the benchmarks using Jupiter/SVM running on
the 4-processor SMP (i.e., without the CableS SVM) to their
execution times using Jupiter in the same platform. Note,
that this version of Jupiter/SVM is not linked with the SVM
system, however, it includes all modifications discussed in
Section 3. We find that the overhead is less than 17% across
all applications, with a much lower geometric mean of less
than 7%.

Next, we measure the impact of the software-based
shared memory system by comparing execution and bench-
mark times of the benchmarks on one cluster node (i.e., only
up to 2 processors) using Jupiter and Jupiter/SVM. This in-
dicates the overhead introduced by the SVM system for ini-
tialization and bookkeeping purposes.

Figure 3 shows the normalized execution and the
benchmark time of the benchmarks using Jupiter and
Jupiter/SVM. The results are normalized to the execution
time of Jupiter/SVM running without SVM. The figure indi-
cates that the average penalty of using the SVM as opposed
to hardware-based shared memory is 39% for one thread,
and 44% for two threads, jumping to more than 70% for
some benchmarks. These overheads stem from both the ex-
pensive initialization of the SVM, thread creation, which is
slow on the cluster, and runtime overhead caused by the use
of the SVM during program execution.

4.3 System scalability

We measure scalability using applicationspeedup.In our
experiments, the single-thread execution includes SVM ex-
ecution; our intent is to show how the system scales with
more processors. We also present a cumulative (total) ap-
plication speedup, which is defined as the ratio of the sum
of the execution (benchmark) times of all the benchmarks
at one thread/processor to the sum of the execution (bench-
mark) times of all the benchmarks atP threads/processors.
Thus, the cumulative speedup gives more relative impor-
tance to benchmarks within the Java Grande suite that exe-
cute longer. The execution and benchmark times of the Java
Grande benchmarks using Jupiter/SVM on a one cluster pro-
cessor is shown in Table 2. The speedups of the individual
benchmarks as well as the total speedup for the benchmark
suite are depicted in Figure 4.

Figure 4 shows that most of the benchmarks exhibit
sublinear speedup for input sizeA. However, for input size
B, the larger problem sizes result in better computation to
communication ratios for most of the benchmarks, and thus,
lead to better speedups. The total speedup of the bench-
marks for input sizeB is close to 14 at 16 processors, in-
dicating that for sufficiently large data sets, for which it is
natural to use a cluster, the system scales well.

5. Related work

There has been a number of projects aiming to build JVMs
that provide an SSI on clusters. These cluster-JVMs may be
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Figure 3. Normalized execution and benchmark time overheads introduced by the SVM system for input sizeA on a single
cluster node. Results are normalized to the execution time of Jupiter/SVM running without SVM.

Benchmark Input size A Input size B
Exec. Bench. Exec. Bench.

Series 147.75 137.93 1388.30 1378.45
LUFact 111.40 97.01 795.59 768.16
SOR 494.85 469.09 1094.15 1050.84
SparseMM 182.02 158.87 360.93 324.65
MolDyn 1583.76 1573.61 N/A N/A
MonteCarlo 460.67 448.77 N/A N/A
RayTracer 2319.42 2308.33 25705.96 25692.78
Total 5299.87 5193.61 29344.93 29214.88

Table 2. The average execution and benchmark times (in
seconds) at one thread/processor.

broadly classified into three types:monolithic, SVM-based,
or hybrid [23].

A monolithic cluster-JVM provides support for thread
management and a shared object space internally within
the JVM itself. While such an approach may lead to bet-
ter performance by tailoring various protocols to the Java
Memory Model (JMM), it involves extensive re-architecture
of the JVM. Examples of monolithic cluster JVMs include
cJVM [24] and the Jackal system [25].

A SVM-based cluster-JVM executes on the top of a
SVM system which provides thread management support
and the illusion of a shared object space to the JVM. This
approach simplifies a cluster-JVM design, but is commonly
believed to result in inferior performance, because of: (i)
the potential mismatch between the JMM and the memory
model supported by the SVM, and (ii) the difficulty of op-
timizing performance due to the fact that the cluster JVM
and the SVM are in two separate system layers. Examples
of SVM-based cluster-JVMs include Java/DSM [26], Kaf-
femik [27], and our Jupiter/SVM.

Finally, a hybrid cluster-JVM combines aspects of the
first two types of cluster-JVMs. For example, a hybrid JVM
may employ a SVM system to provide a shared object space
but is internally modified to provide thread and synchroniza-
tion support. Hybrid cluster-JVMs attempt to reduce the ex-

tent of architectural changes to the JVM by relying on stan-
dard system layers, but also tailor some of its protocols to
the JMM. Examples of hybrid cluster-JVMs include Hyper-
ion [28], JESSICA [29], and JESSICA2 [23].

Our approach in Jupiter/SVM is that of a SVM-based
cluster-JVM, but it improves upon similar systems. For ex-
ample, it incorporates data caching and replication mech-
anisms that are lacking in Kaffemik. It also alleviates the
need for heap address translation which is necessary in
Java/DSM. Furthermore, we are able to transparently run a
large set of benchmarks and provide concrete demonstration
of the viability of our approach (e.g., it is unclear whether
Java/DSM was ever developed to completion).

More importantly, we show that with our SVM-based
approach it is possible to obtain scalable performance of the
cluster JVM on a 16-processor system, which is, to the best
of our knowledge, one of the largest cluster configurations
reported in the literature. In spite of its current limitations,
Jupiter/SVM delivers better performance than what is re-
ported for existing cluster-JVMs, and on a larger set of ap-
plications. For example, the speedups of Jupiter/SVM for
RayTracer andSOR on 8 processors exceed those of JES-
SICA (indeed, they experience a slowdown). Similarly, the
speedup of Jupiter/SVM, at 3 processors, forRayTracer
is significantly better than that of Kaffemik for the same pro-
gram.

6. Concluding remarks

In this paper, we describe the design, implementation, and
evaluation of a JVM-based SSI on clusters. We provide the
necessary SSI functionality in two layers: a bottom layer,
CableS, that provides a release-consistency-based shared
address space abstraction and a standard Pthreads API, and
a top layer, Jupiter/SVM, which is an SMP-based JVM ex-
tended to deal with memory consistency, private memory
allocation, and resource limitation issues imposed by the
lower layer.

We evaluate the performance of our system on a
16-processor cluster of PCs that are interconnected by a
Myrinet network, as well as on a 4-processor SMP. We
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Figure 4. Benchmark speedups. For each application we show speedups based both on execution as well as benchmarks time.

demonstrate that: (i) the overhead introduced by SVM-
specific extensions is less than 7% on average and (ii)
Jupiter/SVM scales well to achieve an average speedup of
14 on 16 processors. Thus, our approach demonstrates that
JVMs designed for SMPs are also able to run on clusters.
We identify the required support and prototype a working
JVM that supports both SMPs and clusters. Given that
JVMs require significant effort to develop and optimize, our
work allows leveraging this effort on clusters, an important
architectural platform.

Finally, future work will focus on two venues. First,
we will address the functionality limitations of our current
implementation, which include SSI I/O, garbage collection,
and a JIT compiler. Second, more work is required to better
understand the overheads associated with providing JVM-
based SSIs on clusters and the use of locality enhancement
techniques for scaling to larger systems than what we exam-
ine.
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