
Revisiting Genetic Algorithms for the FPGA Placement Problem

Peter Jamieson
Miami University, Oxford, OH, 45056

Email: jamiespa@muohio.edu

Abstract— In this work, we present a genetic algorithm
framework for the FPGA placement problem. This frame-
work is constructed based on previous proposals in this
domain. We implement this framework in an academic FPGA
tool, and run a set of experiments that show that the fine
grain genetic mutation approach, previously proposed, is
not as good as an existing simulated annealing algorithm.
This does not discount the use of genetic algorithms in this
domain, and instead, provides motivation to explore other
aspects of the problem to apply genetic algorithms to this
problem.

Keywords: GA, Placement, FPGA, Simulated Annealing

1. Introduction
Very Large Scale Integration (VLSI) design automation

consists of a number of complex problems that map a users
digital design onto a target Integrated Chip (IC) technology.
One of these technologies, which is seeing more an more
popularity, is the Field-Programmable Gate Array (FPGA),
since it can quickly be programmed with any digital design.
FPGAs are analogous to the general purpose processor
except that FPGAs programmably can implement digital
logic instead of sequential programs.

One of the problems, when a design is mapped to an
FPGA, is how to place the circuit components onto the
programmable silicon such that various metrics such as the
critical path (corresponds to speed), power consumption, and
wire consumption are minimized. The placement problem is
an NP-complete problem [1] and various heuristic algorithms
have been used to solve this problem. In this paper, we focus
on genetic algorithms (GA) used for the FPGA placement
problem. In particular, we set out to investigate how previous
approaches using a GA for placement improve the results
compared to the exiting simulated annealing approach (SA).
It is our hypothesis that based on the no-free-lunch (NFL)
theorem [2], which suggests that there does not exist an algo-
rithm for solving all optimization problems that is generally
on average better than competitors, that the GA proposed
in [3] for FPGA placement may be as good as SA, but is
not better since there solution does not exploit any aspect
that the SA does not.

To test this hypothesis, we implemented a GA frame-
work for FPGA placement within the VPR 5.0 academic
framework [4] and then ran a set of experiments with the
SA implemented in VPR 5.0 compared to various GAs

looking at how the algorithms perform with respect to
the critical path and power consumption of each of the
benchmarks. Our results show that when both the SA and
GA algorithms are given the same amount of processing
time (based on the time taken for the SA placement) that
the results generated from the GA algorithms (including an
algorithm similar to the one in [3]) produce significantly
slower critical paths and consume more power than the SA
generated results. In another experiment, without a strict run-
time dependence between the algorithms, the GAs are run for
a specific number of generations and the results do improve,
approaching those of the SA.

Our results demonstrate that the existing fine grain mu-
tation approaches for FPGA GA placers is not the best
approach. This does not mean that GA for FPGA placement
is not an appropriate approach, and in our discussion we pro-
vide some suggestions on how to create a better algorithm.

The motivation to further study and improve GAs for
FPGA placement is due to the increasing runtime of the
Computer Aided Design (CAD) flow that maps user designs
to the FPGA (placement is one stage of this flow) [5]. GAs
are inherently parallelizable, and for this reason alone, it is
important to understand how this type of algorithm works
within the FPGA domain. This work is a first step in moving
away from previous approaches.

The remainder of this paper is organized as follows.
Section 2 briefly describes FPGAs, CAD for FPGAs, and
the FPGA placement problem for FPGAs including genetic
algorithms. Section 3 describes our implementation of a
genetic algorithm. Section 4 describes our experimental
setup and shows results of our experiment for the MCNC
benchmarks. Finally, Section 5 concludes this work.

2. Background
FPGAs are programmable ICs that can implement any

digital design. These devices consist of programmable logic
blocks and a programmable routing [6] where the pro-
grammable routing consists of wire segments that are con-
nected to either logic blocks or other wire segments via
programmable switches. The logic blocks are also called
clusters (which is the term we will use throughout this
work) where these clusters commonly consist of a combi-
nation of Look-up Tables (LUTs), flip-flops, and internal
programmable routing. The most important aspect of this
architecture for the placement problem is the cluster, and the



placement algorithm maps design clusters onto the FPGA,
which, itself, consists of an array of these clusters.

An example open source CAD flow used by VPR 5.0,
which is an academic FPGA tool that allows us to exper-
imentally test algorithms and FPGA architectures. First, a
digital design is created in Verilog HDL [7] and used as
the input to this CAD flow. A series of CAD flow stages
convert the design to a programmable bit-stream that can be
uploaded to the FPGA to implement the digital design. The
focus of this work is on the placement stage, and that will
be the focus of this background section.

2.1 Details of FPGA Placement
FPGA placement algorithms try to place the clusters,

representing the digital design, onto the array of FPGA
clusters such that the critical path (the longest path from
either a primary input to a primary output, a primary input to
flip-flop, flip-flop to flip-flop, or flip-flop to primary output)
is minimized, the power consumption of the programmable
routing is minimized, and the overall wire-length of the
mapped circuit is minimized. This problem has been shown
to be NP-complete to solve optimally, and a number of popu-
lar algorithms have been used to solve this problem including
simulated annealing ([8], [6]), which is the algorithm used
in VPR 5.0 [4], min-cut ([9], [10], [11]), and analytic ([12],
[13]), which includes force-directed placers.

We focus on SA and GA algorithms in this work, and
the simulated annealing algorithm, when used in the FPGA
domain for placement, attempts to minimize the various met-
rics for optimization based on the process of cooling metals.
Basically, a cooling schedule controls the weighting of a
probability function. This function determines if randomly
selected swaps between clusters on an FPGA are accepted
or not. Each random swap of points will either improve
or degrade the critical path, and initially, all swaps are
accepted regardless if they improve the optimizations metrics
or not. As the temperature cools, only swaps that improve
the critical path are accepted. In this way, the early phases
of the cooling schedule is used to allow hill climbing that
will, hopefully, avoid local minimums in this optimization
problem [6].

The two most relevant aspects of the annealer as a
placement algorithm for FPGAs are the scheduling of the
cooling and the cost function. The scheduling of the annealer
determines if a random swap is accepted and determines the
maximum Manhattan distance of the cluster swaps. As the
algorithm continues, swapping of clusters that don’t improve
the cost function are not accepted, and the distance between
the swaps is reduced.

The distance of a random swap of clusters on a X by Y
array is based on the term Rlimit. Given a 5 by 5 FPGA,
Rlimit can have a maximum value of 5 meaning that a
cluster located at the x coordinate 0 and y coordinate 0 could
be swapped with another cluster located at x coordinate 4

SOFT 
LOGIC

SOFT 
LOGIC

SOFT 
LOGIC

SOFT 
LOGIC

SOFT 
LOGIC

SOFT 
LOGIC

SOFT 
LOGIC

SOFT 
LOGIC

SOFT 
LOGIC

SOFT 
LOGIC
(0,0)

SOFT 
LOGIC

SOFT 
LOGIC

SOFT 
LOGIC

SOFT 
LOGIC

SOFT 
LOGIC

SOFT 
LOGIC

SOFT 
LOGIC
(0,4)

SOFT 
LOGIC

SOFT 
LOGIC

SOFT 
LOGIC

SOFT 
LOGIC

SOFT 
LOGIC

SOFT 
LOGIC

SOFT 
LOGIC
(4,0)

SOFT 
LOGIC
(4,4)

Figure 1: Shows how the Rlimit factor affects the distance
of swaps

and y coordinate 4. As Rlimit is reduced by the annealer’s
scheduler, the distance for a swap is reduced, and this
represents the stabilizing of the placement algorithm (the
cooling and lower excitation of the molecules in a metal).
For example, Figure 1 shows a 5 by 5 FPGA where random
swaps could happen for the digital logic at x = 0, y = 1 with
an Rlimit = 2 (The candidate cluster to swap is surrounded
by a thick dotted line, and the clusters it can swap with are
shaded in darker grey).

The second aspect of the annealer is the cost function
used estimate the quality of the placement. The cost function
for SA in VPR 5.0 consists of two components defined
in [6]. First is the sum of the bounding box dimensions
of all nets which estimates the total amount of wire needed
to implement the circuit (also know as wire-length). Given
N nets, bbx(i) and bby(i) are the x and y dimensions of a
bounding box for each net(i), and q(i) as a scaling factor
for better wire-length estimates, then the first component of
the cost function is defined as:

WiringCost =
N∑

i=1

q(i) · [bbx(i) + bby(i)] (1)

The second component of the cost function evaluates the
timing cost of a placement where,

TimingCost =
∑

∀i,j∈circuit

Delay(i, j)·Criticality(i, j)(CE)

(2)
where CE is a constant, Delay(i,j) is the delay of the
connection from source i to sink j, and Criticality(i,j) is a
measure of how close the given i, j path is to the global
critical path.



The perceived change in the cost function for each place-
ment change is:

Cost = λ · TimingCost

PreviousT imingCost
+

(1 − λ) · WiringCost

PreviousWiringCost

(3)

where the previous costs are used to normalize the two
components of the cost function, and the λ parameter is
used to weight the optimization importance of each of the
two components.

Lamoureux et. al. [14] extended this cost function to be
power aware. They added a new term:

PowerCost =
N∑

i=1

q(i) · [bbx(i) + bby(i)] ·Activity(i) (4)

where Activity(i) is the switching activity on a particular
net, and by reducing this component, the power consumed
over long and power hungry programmable routing lines is
reduced. The new cost function with this component is the
following:

Cost = λ · TimingCost

PreviousT imingCost
+

(1 − λ) ·
[
(1 − γ) · WiringCost

PreviousWiringCost
+

γ · PowerCost

PreviousPowerCost

] (5)

where the γ factor is used to control how strong or weak
the power optimization component is.

As described, the parameters γ and λ are used to control
the weighting of the cost function, or how much the cost
function cares about optimizing for a particular metric.
Previous research has shown that for a cost function that
attempts to optimize for power has a γ equal to 0.8 and a
λ equal to 0.5 [14]. In our experiments, we use this cost
function as the fitness function to fairly compare the SA
versus GA implementations. It is possible to experimentally
search for the best of these parameters for a GA (as they
were experimentally tuned for an SA algorithm), but for the
scope of this paper we simply use the above values instead
of tuning each of the algorithms.

2.2 Genetic algorithms and placement
Genetic algorithms and evolutionary algorithms use the

“survival of the fittest” idea to heuristically find good solu-
tions for a problem. Within the VLSI domain GAs have
been applied to a number of CAD problems, and for a
more thorough survey of these problems the reader should
read [15]. In this work, we are specifically concerned with
GAs for FPGA placement.

Genetic algorithms (GA) and evolutionary programming
algorithms have been previously implemented and explored

SOFT 
LOGIC

SOFT 
LOGIC

SOFT 
LOGIC

SOFT 
LOGIC

SOFT 
LOGIC

SOFT 
LOGIC

SOFT 
LOGIC

SOFT 
LOGIC

SOFT 
LOGIC

SOFT 
LOGIC
(0,0)

SOFT 
LOGIC

SOFT 
LOGIC

SOFT 
LOGIC

SOFT 
LOGIC

SOFT 
LOGIC

SOFT 
LOGIC

SOFT 
LOGIC
(0,4)

SOFT 
LOGIC

SOFT 
LOGIC

SOFT 
LOGIC

SOFT 
LOGIC

SOFT 
LOGIC

SOFT 
LOGIC

SOFT 
LOGIC
(4,0)

SOFT 
LOGIC
(4,4)

0

(0,1)

1

(2,3)

2

(4,1)

3

(4,2)

4

(0,4)

5

(2,4)

6

(3,1)

7

(3,0)

8

(3,2)

9

(0,2)

10

(0,3)

11

(1,2)

12

(1,4)

13

(4,0)

14

(0,0)

15

(2,2)

Design Logic

Location

16

(1,1)

Sample Genome

Figure 2: Sample genome for 20 elements on a 5x5 FPGA

for FPGA placement in two detailed cases. The first instance,
which this paper re-investigates, is the implementation by
Venkatraman et. al. [3] in which they implemented a GA
based placer in VPR 4.3 (the predecessor to VPR 5.0). In
their work, each cluster’s location on the FPGA array is a
gene, and the 2-D location of each of the clusters forms an
individuals genome. Figure 2 shows how a genome for a
design consisting of 20 elements is represented.

A population of these individuals is created and each
individual is evaluated based on a fitness function similar to
the one described earlier for timing and wiring cost (there is
no component for power reduction). Within the population,
the fittest individuals are kept and mutated to create the next
generation based on proportional representation, which is
left undefined by the authors. Mutations are based on local
cluster swaps (R_limit = 1) and global swaps (R_limit
set to the maximum). Their results show that this algorithm
improves the critical path compared to VPR’s simulated
annealing algorithm for ten benchmarks. Unfortunately, there
is no analysis of run-times for the two algorithms (SA and
GA), which leaves a few questions unanswered.

More recently, Meng et. al. [16] have created an algorithm
that combines both GA and SA algorithms for placement.
Their approach claims that the GA aspect of the algorithm
are used to escape local minimums (as another form of hill
climbing) and the simulated annealing is used to quickly
improve solutions. The genome for their approach is the
same as the one previously described. They also use a fine-
grain mutation based on swapping clusters, and they propose
a new method for cross-breeding fit individuals. Their results



show similar costs compared to VPR 4.3’s simulated an-
nealing approach with similar run-times. Within this work,
though their concepts for cross-breeding of placements is
very interesting, we have not considered or compared their
implementation in our GA framework.

3. GA Framework for Placement
We have built a genetic algorithm placer framework in

VPR 5.0 that focuses on optimizes placement for wire-
length, speed, and power consumption as defined by equation
(5). A key difference between this work and previous evalu-
ations of GAs for FPGA placement is the power estimation
framework that allows the activation estimation (estimation
of switching activity) for each of the nets in a design to
be read in and used to estimate power consumption of a
particular design on an FPGA [17]. This allows us to use
the cost function as shown in equation (5) to be used to rank
the the fitness of a population of placement solutions.

Similar to other GA implementations of FPGA placement,
our GA placement algorithm framework creates a genome
based on the x and y coordinates of each cluster in the design
(see Figure 2). In addition to how the genome is represented,
we define a number of parameters within the framework
that control the GA. The size of a population is defined by
σ. Using this number we define the parameters ω, α, and
β as percentages where ω + α + β = 100%, and ω% of
the population is the number of individuals from the current
generation to maintain as parents in the next generation, α%
of the population are the children of the parents, and β% of
the population is randomly created new individuals. The β
parameter is present for another CAD experiment we have
performed with this algorithm, but in this work it is always
set to 0%. Table 1 summarizes these parameters.

Our GA framework uses a mutation operator to create new
individuals in a population. Random swaps of clusters on the
FPGA are the mutation operations for our GA framework,
and therefore, this mutation is related to the term Rlimit,
which controls the distance between cluster for a random
swap. The number of mutations per new individual is de-
fined by the parameters local_swaps% and global_swaps%
where local_swaps% multiplied by the number of clusters
in a circuit defines the number of mutations (or swaps) to try
where Rlimit is equal to one, and global_swaps% multiplied
by the number of clusters in a circuit is the number of
mutations/swaps to try where Rlimit is scheduled to be
between 1 and the maximum size of the FPGA array in
one dimension. These parameters were previously described
in [3] and are used here so that we can compare SA to
the original GA in [3] and our own implementations. A
mutation (or swap) is only accepted if the mutation results in
an improved placement based on the cost function. Table 1
also summarizes these parameters.

The pseudocode for our GA framework for FPGA place-
ment is shown in Algorithm 1. Based on all of the parameters

we define three different GAs for FPGA placement. As
stated earlier the following values are constant: σ = 0%,
λ = 0.5, and γ = 0.8. Our first algorithm, which we
call GA_OLD, is a version of [3], and the parameters for
this algorithm are shown in the second column of Table 2.
There are a few differences between our implementation
of GA_OLD and the one in [3]. For example, in [3] the
mutations are only accepted with some probability that is
experimentally set (ours only selects improvements), their
cost function is defined slightly differently than ours, and
the ω value is not described in enough detail to replicate
in this work. Finally, the R_limit parameter is set to 1 for
local mutations and R_limit is set to the maximum size of
the FPGA array in one dimension for global mutations.

The two other GA algorithms that we have defined within
our framework for our experiments are called GA_SS, which
stands for steady state GA, and GA_SIMPLE, which stands
for steady state GA. Table 2 columns three and four define
the parameters for these two algorithms, respectively. The
difference between the two algorithms is that GA_SIMPLE
creates an entirely new population based on the fittest
individuals (ω = 0) while GA_SS maintains the parents in
each new generation. Finally, the R_limit parameter for
these two algorithms is scheduled in the same way it is
done for the SA in VPR 5.0. Initially, R_limit is set to the
maximum size of the FPGA array in one dimensions. As
the algorithm proceeds this value is decreased when there
are no new individuals in the population that are better than
the last population for the fitness function.

4. Comparison of Placement Results
In this section, our goal is to compare SA and GA for

FPGA placement in the VPR 5.0 framework to optimize
for power consumption and speed. We are not trying to
discredit previous attempts at implementing a GA for FPGA
placement, and as described in the previous section our
implementation of the GA_OLD in [3] is not exact by any
means. The two experiments that we run are, first, two com-
pare the 4 placement algorithms (3 from the GA framework
we have created) where in one case all the algorithms run
for a set amount of time, and second, the GA algorithms are
executed for a set number of generations. Before we present
these results, we describe the experimental setup.

4.1 Experimental Setup
For our experimental setup, there are a two details that

we must describe:
1) The architectural parameters describing the FPGA we

are placing our benchmarks on
2) The computation system and conditions on which the

algorithm is executed
The FPGA architectural parameters that describe the

FPGA we are mapping to are shown in Table 3. For a more



Table 1: Configurable parameters for the GA
Parameter Description of parameter

ω The percentage of the fittest individuals in the population to use as parents
α The percentage of the population created from the fittest individuals
β The percentage of the population that is randomly created
σ The number of individuals in the population

R_limit The distance between swaps on the FPGA array
global_swaps The percentage of the number of clusters that defines the number of global mutations for a new individual
local_swaps The percentage of the number of clusters that defines the number of local mutations for a new individual

λ A cost function parameter to weight timing optimization importance
γ A cost function parameter to weight power optimization importance

Algorithm 1 The outline of the GA algorithm for placement
for i = 1 to σ do {Initialize the population}

new_population[i] = create_random_placement()
end for

loop {For time –OR– For set number of generations}
Rlimit = update_rlimit()

{Evaluates the populations based on the cost function and orders a list}
ranked_population = evaluate_population(newpopulation, γ, λ)

{Create the next generation}
current_spot = floor(ω · σ)
for i = 1 to floor(ω · σ) do {Create the children from the best parents}

new_population[i] = ranked_population[i] {Copy the parents to the next generation}
for j = 1 to α · ω · σ do

new_population[current_spot] = mutate_genome_x_times(ranked_population[i], local_swaps, global_swaps, Rlimit)
current_spot + +

end for
end for
for i = 1 to floor(β · σ) do {Create random individuals}

new_population[current_spot] = create_random_placement()
end for

end loop

Table 2: Parameters for the three GAs for FPGA placement
Parameter Value for GA_OLD Values for GA_SS Values for GA_SIMPLE

σ 3 * (number of clusters in a design) 3 * (number of clusters in a design) 3 * (number of clusters in a design)
ω 10% of σ 10% of σ 0% of σ
α 90% of σ 90% of σ 100% of σ

R_limit 1 and MAX Variable Variable
global_swaps 10% 20% 20%
local_swaps 10% 0% 0%

Table 3: The FPGA architectural parameters
Parameter W N K Fcin Fcout Fs routing transistor sizing

Value 20% larger than minimum 10 5 0.18 0.1 3 uni-directional 27mwt

detailed explanation of these parameters please consult [6],
but for the sake of space and unnecessary details, we do not
describe these parameters here. Note, the transistor size for
these experiments is based on some our results in [18], which
also describes how VPR 5.0 has been updated to support
power estimation.

These experiments are run using thirteen of the MCNC
benchmarks [19] where these benchmarks have been con-
verted to a netlist of clusters using an academic CAD flow.
Each benchmark is passed into VPR 5.0 for the same FPGA
as described in Table 3. VPR 5.0 uses one of the 4 placement
algorithms and then routes the design. The output of VPR



5.0 is the size of the FPGA (which is the same for each
benchmark regardless of placement algorithm), the speed of
the circuit, and the power consumption of the device.

This framework is run on a Intel Core Duo E8400 CPU
with 2GB of RAM running at 3.00 GHz in Cygwin for
Windows XP. For the experiments where run-time is kept
constant VPR 5.0 gets uncontested access to one of the
cores, and the only processing interference will be due to
the operating system. This contention should be equal for
all runs.

4.2 Fixed runtime results
In the first experiment, all four FPGA placement algo-

rithms are run for a fixed amount of time, and this shows
which algorithm finds the best solution for a given time limit.
The time limit is based on how long the SA takes to execute
for it’s complete schedule. Our hypothesis, originally, is that
the present design for the GAs, which is similar to the one
proposed in [3] will not be as good as the SA in VPR 5.0
for minimizing critical path and power consumption.

Table 4 shows the results for power consumption and
critical path for each of the MCNC benchmarks run over
each of the four FPGA placement algorithms. Column one
shows the MCNC benchmark name, and SA, GA_OLD,
GA_SS, and GA_SIMPLE have the critical path and power
consumption results over the following respective columns
in groupings of two. In the final row of the table, we show
the geometric average for all 13 benchmarks.

In terms of SA versus the GAs, it is clear that the SA
produces better speed and power results compared to the
three GAs. This confirms our original hypothesis. Comparing
the GAs to each other it appears that the GA_SS is the
best for optimizing the critical path and GA_SIMPLE is the
best for power optimization. However, if we look at energy
consumption compared to power consumption where energy
is the power consumed for an amount of work done (a clock
cycle in this case), then GA_SS is the best optimization
algorithm.

If we look at the benchmark by benchmark results, there
are a few cases when a GA has found a better solution
than SA. For example, the GA_OLD placement has a better
critical path for apex4 compared to SA. This result is not
surprising as the GAs are searching a broader space and
might find good solutions, but on average the SA algorithm
outperforms the GAs. In [16] they claim that the benefit of
SA is it converges faster, but tends to get stuck in local
minimums. Our results are showing the same results for the
GA framework described.

4.3 GAs run for a fixed number of generations
In [3], the GA was run for a fixed number of generations.

We have also ran this experiment for our GA framework
with the hypothesis that the GAs will produce better results
than SA. We execute the GAs for 30 generations as this is

the maximum number of generations shown in the results in
[3].

Table 5 shows the geometric average of both the fixed
runtime and the fixed generations experiments for each of
the four algorithms. We have not included the individual
benchmark results since this information does not add any
value to our discussion.

These results show that given more time to execute, the
GAs solutions are better for the most part, but the majority
of the improved results improve the critical path of the
circuits(likely due to the larger potential for improving this
metric). Additionally, the improvements are not as signif-
icant as we hypothesized. The results are better than the
fixed runtime experiments, but are still worse than the SA
placement results.

Given sufficient runtime, we expect that the GA results
will converge to those of the SA, and likely, be superior. Our
results, however, suggest that how the genome and mutations
are implemented for this framework is lacking. The mutation
implementation, as a cluster swap, means that the population
change is similar, if not the same, as how the simulated
annealer works, and therefore, the GA approach is exploring
multiple points in the search space for short amounts of time
as opposed to SA which may do a bit of hill climbing, but
is generally converging to the local minimum from which
the random initialization starts. This is also in line with the
points made in [16].

5. Conclusion

Our experiments show that the GA framework based on a
fine grain mutation operator is no better than SA algorithms
for FPGA placement. As discussed in the introduction, we
expected that the SA would outperform the GA approaches
currently implemented for FPGA placement. The main rea-
son for this is that these GA implementations are searching
over a range of optimization points in parallel while the SA
is exploring one optimization point with significant depth
(finding a local minimum).

These results, however, do not suggest that GAs do not
have a part to be played in FPGA placement. Firstly, the
approach proposed in [16] has value by using GA and SA
in combination as a meta-heuristic. Also, since GAs lend
themselves well to parallelization means that GA types of
approaches may find significant value as the need for reduced
CAD flow time increases [5].

From our perspective, we believe that the GAs for place-
ment are operating on too fine a granularity. In the future,
we hope to investigate how higher-level information, such
as grouping of clusters, can be added to the GA framework
to improve the results. This work presents a motivation to
rethink how GA for FPGA placement can be implemented.



Table 4: Benchmark results for fixed-time execution
SA GA_OLD GA_SS GA_SIMPLE

Benchmark Critical Power Critical Power Critical Power Critical Power
Path Consumption Path Consumption Path Consumption Path Consumption

in seconds in Watts in seconds in Watts in seconds in Watts in seconds in Watts

clma 3.51E−8 2.21 4.84E−8 3.04 5.06E−8 2.90 6.55E−8 2.55
spla 2.44E−8 1.35 3.02E−8 1.60 3.15E−8 1.59 3.43E−8 1.52
frisc 2.32E−8 1.68 3.22E−8 1.83 3.16E−8 1.85 4.12E−8 1.56

elliptic 1.92E−8 1.44 2.63E−8 1.76 2.70E−8 1.72 3.71E−8 1.38
ex1010 3.09E−8 2.08 3.82E−8 2.08 3.77E−8 2.10 4.56E−8 1.91
apex4 2.03E−8 0.84 1.95E−8 0.95 2.14E−8 0.89 2.22E−8 0.83
apex2 1.87E−8 1.43 2.12E−8 1.61 2.06E−8 1.66 2.78E−8 1.27

seq 2.04E−8 1.25 2.59E−8 1.25 1.84E−8 1.66 2.40E−8 1.38
misex 1.66E−8 1.23 1.90E−8 1.20 1.73E−8 1.30 2.23E−8 1.11
alu4 1.58E−8 1.41 1.81E−8 1.41 1.74E−8 1.45 1.96E−8 1.35
des 1.49E−8 2.40 4.07E−8 2.14 2.72E−8 3.20 3.29E−8 3.10
dsip 1.13E−8 1.81 1.72E−8 1.92 1.19E−8 2.76 1.94E−8 2.16

bigkey 1.03E−8 0.77 1.25E−8 1.40 1.27E−8 1.40 1.91E−8 1.06

geometric average 1.90E−8 1.45 2.50E−8 1.64 2.30E−8 1.78 2.94E−8 1.53

Table 5: Benchmark results for GAs executing over 30 generations
SA GA_OLD GA_SS GA_SIMPLE

Benchmark Critical Power Critical Power Critical Power Critical Power
Path Consumption Path Consumption Path Consumption Path Consumption

in seconds in Watts in seconds in Watts in seconds in Watts in seconds in Watts

geometric average 1.90E−8 1.45 2.50E−8 1.64 2.30E−8 1.78 2.94E−8 1.53
(fixed runtime)

geometric average 1.90E−8 1.45 2.05E−8 1.64 1.99E−8 1.72 2.91E−8 1.55
(fixed generations)

References
[1] W. E. Donath, “Complexity theory and design automation,” in In

Proceedings of the 17th Design Automation Conference, 1980, pp.
412–419.

[2] D. H. Wolpert and W. G. Macready, “No Free Lunch Theorems for
Search, REPORT SFI-TR-95-02-010,” Tech. Rep., 1996.

[3] R. Venkatraman and L. M. Patnaik, “An evolutionary approach to
timing driven fpga placement,” in GLSVLSI ’00: Proceedings of the
10th Great Lakes symposium on VLSI, 2000, pp. 81–85.

[4] J. Luu, I. Kuon, P. Jamieson, T. Campbell, A. Ye, W. M. Fang, and
J. Rose, “VPR 5.0: FPGA CAD and Architecture xploration Tools
with Single-Driver Routing, Heterogeneity and Process Scaling,” in
ACM/SIGDA International Symposium on FPGAs, Feb 2009.

[5] A. Ludwin, V. Betz, and K. Padalia, “High-quality, deterministic
parallel placement for fpgas on commodity hardware,” in FPGA ’08:
Proceedings of the 16th international ACM/SIGDA symposium on
Field programmable gate arrays, 2008, pp. 14–23.

[6] V. Betz, J. Rose, and A. Marquardt, Architecture and CAD for Deep-
Submicron FPGAs. Kluwer Academic Publishers, 1999.

[7] Verilog Hardware Description Reference, Open Verilog International,
March 1993.

[8] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by
Simulated Annealing,” Science, vol. 220, no. 4598, pp. 671–680, May
1983.

[9] J. Kleinhans, G. Sigl, F. M. Johannes, and K. J. Antreich, “GORDIAN:
VLSI Placement by Quadratic Programming and Slicing Optimiza-
tion,” IEEE Transactions on Computer-Aided Design, vol. 10, no. 3,
pp. 356–365, Mar. 1991.

[10] D. Huang and A. Khang, “Partitioning-Based Standard-cell global
placement with an Exact Objective,” in International Symposium on
Physical Design, Napa Valley, CA, 1997, pp. 18–25.

[11] A. E. Dunlop and B. W. Kernighan, “A Procedure for Placement of

Standard-Cell VLSI Circuits,” IEEE Transactions on Computer-Aided
Design, vol. 4, no. 1, pp. 92–98, Jan. 1985.

[12] B. M. Riess and G. G. Ettelt, “Speed: Fast and Efficient Timing Driven
Placement,” in IEEE International Symposium on Circuits, 1995, pp.
377–380.

[13] K. Vorwerk, A. Kennings, and A. Vannelli, “Engineering details of a
stable force-directed placer,” in ICCAD ’04: Proceedings of the 2004
IEEE/ACM International conference on Computer-aided design, 2004,
pp. 573–580.

[14] J. Lamoureux and S. J. E. Wilton, “On the interaction between power-
aware fpga cad algorithms,” in ICCAD ’03: Proceedings of the 2003
IEEE/ACM international conference on Computer-aided design, 2003,
p. 701.

[15] P. Mazumder and E. Rudnick, Genetic Algorithms for VLSI Design,
Layout & Test Automation. Prentice Hall, 1999.

[16] Y. Meng, A. E. A. Almaini, and W. Pengjun, “Fpga placement
optimization by two-step unified genetic algorithm and simulated
annealing algorithm,” Journal of Electronics (China), vol. 23, no. 4,
pp. 632–636, 2007.

[17] K. Poon, “Power Estimation for Field-Programmable Gate Arrays,”
Ph.D. dissertation, University of British Columbia, 2002.

[18] P. Jamieson, W. Luk, S. J. Wilton, and G. A. Constantinides, “An en-
ergy and power consumption analysis of fpga routing architectures,” in
International Conference on Field-Programmable Technology, 2009,
pp. 324–327.

[19] S. Yang, “Logic Synthesis and Optimization Benchmarks, Version
3.0,” 1991, tech. Report. Microelectronics Centre of North Carolina.
P.O. Box 12889, Research Triangle Park, NC 27709 USA.


