
Identifying and Placing Heterogeneously-sized
Cluster Groupings Based on FPGA Placement Data

Farnaz Gharibian and Lesley Shannon
School of Engineering Science

Simon Fraser University
Email: fga7,lshannon@sfu.ca

Peter Jamieson
Department of Electrical and Computer Engineering

Miami University
Email: jamiespa@miamioh.edu

Abstract—Field Programmable Gate Arrays (FPGAs) CAD
flow run-time has increased due to the rapid growth in size of
designs and FPGAs. Researchers are trying to find new ways to
improve compilation time without degrading design performance.
In this paper, we present a novel approach that identifies tightly
grouped FPGA logic blocks and then uses this information during
circuit placement. Our approach is an orthogonal optimization
applicable in incremental design and physical optimization, and
reduces placement run-time. Specifically, we present a new algo-
rithm that analyzes designs post-placement to extract medium-
grained super-clusters that consist of two to seventeen clusters,
which we call “gems”. We modified VPR’s simulated annealing
placement algorithm to place our mixture of gems and clusters.
Our new “Singularity Annealing” algorithm first crushes each
cluster grouping into a “singularity” (treated as a single cluster).
Then, the Singularity Annealer is run over this condensed circuit
to obtain an initial placement, followed by an expansion of the
singularities. Finally, we run a second low-temperature annealing
phase on the entire expanded circuit. Our results show that our
system reduces placement run-time on average by 17% while
maintains the designs critical path delay, and increases designs
channel width, and wirelength by 2% and 6.3%, respectively. We
have also presented a test case to show the re-usability of gems
in an incremental design example.

I. INTRODUCTION

Placement is one of the most time consuming steps in the
FPGA CAD flow [1] and finding an optimal solution for
the FPGA placement problem is an NP-hard problem [2].
Many studies have tried to improve placement algorithms
over the past 30 years, but current algorithms are far from
optimal [3]. Due to the rapid growth in the size of designs and
FPGAs, compilation times approach a day for large devices,
significantly limiting designer productivity [4].

Several previous studies have proposed a hierarchical place-
ment approach, in which a design is divided into coarse-
grained sub-components that can be independently placed.
Such an approach may reduce run-time and may scale well on
multicore architectures. A primary challenge with hierarchical
placement approaches, however, is identifying appropriate sub-
components. At one extreme, work such as [5] assumes very
small fixed-sized components, which may or may not match
the locality present in circuits. At the other extreme, other
work such as [6] has proposed using large IP blocks as sub-
circuits during the hierarchical placement process; for circuits
containing few (or no) large IP blocks, this approach may limit
the amount of parallelism possible.

In this paper, we propose a technique that falls between
these two extremes. We demonstrate a new approach that
generates heterogeneous cluster groupings (which we call
gems) based on an analysis of post-placement proximity data
that finds low-level relationships between a circuit’s logic
blocks without enforcing a complete partitioning of the entire
design or using floorplanning. In our experiment, each gem
contains between two and seventeen logic clusters based on
parameters for gem extraction. Compared to work such as [5],
these medium-sized gems are expected to lead to better quality
results, since the nature of the gems is circuit-specific. At the
same time, these gems are significantly smaller than the IP
blocks considered in [6]; we anticipate that for many circuits,
this will lead to better parallelism.

Our design flow is as follows. The design is first compiled
as normal, creating an initial placement. While the designer
debugs the existing design/creates a new design module, our
“gem” detection algorithm then finds cluster groupings of
closely co-related clusters based on the existing placement
offline. In a typical design project, the user performs many
compilation iterations. Between each iteration, the designer
refines the design (often as a result of debugging), however,
much of the circuit remains unchanged. If appropriate high-
quality cluster groupings from an existing design can be iden-
tified offline after a synthesis phase (i.e. when the designer is
debugging the current circuit/designing new components), they
can be re-used in subsequent iterations to reduce compilation
time and improve the overall design productivity.

In subsequent iterations, these pre-determined gems are
placed as a single unit by our novel Singularity Placer,
reducing the size of the placement problem (and hence the
run-time) for these subsequent iterations. As such, the time
required for the first compilation remains unchanged since
gem detection is performed offline in the background after
this synthesis phase is completed and while the designer is
completing the next design iteration. However, subsequent
compile iterations for the same project can be accelerated
by, on average, more than 17%, while maintaining the same
critical path and increasing the channel width by only 2% and
wirelength by only 6.3% , even though it is as if the circuit
had been recompiled from scratch each time.

The specific contributions of this paper are:
• An algorithm that obtains inter-cluster proximity data

from post-placement analysis to identify highly co-related
clusters (“gems”) that negatively impact placement results
if their clusters are not co-located.

• Our Singularity Placement (SP) algorithm, a two-stage
placement algorithm that uses gems to accelerate place-
ment. Specifically, we alter VPR’s simulated annealer to
treat the gems as a single cluster (singularity) during
placement. In the second phase, the gems are re-expanded
to their actual size for a low temperature second annealing
phase over the entire circuit.

• A demonstration of how the gem identification algorithm
and the Singularity Placement algorithm can be integrated
into an FPGA CAD flow to improve overall design
productivity by more than 17% on average.

• An example experiment to show how our gems can be
used in incremental design.

This paper is organized as follows. Section II discusses previ-
ous work in placement and Section III presents our technique
to extract gems based on a set of parameters. Section IV
describes our singularity placer. Our experimental framework,
including CAD flow and benchmarks, and the results of our
analysis are in Section V. Finally, Section VI concludes the
paper and summarizes future work.

II. BACKGROUND

In a study done by Chang et. al. [7], the optimality and scal-
ability of three placers from academia (Dragon [8], Capo [9],
and mPL [10]), and one industrial placer (QPlace [11] from
Cadence) were investigated. The results from these placers
were compared for placement benchmarks that were con-
structed with known upper bound on optimal wirelength [12].
Their results show that existing placements solutions are not
stable because their effectiveness depends on the characteris-
tics of the benchmarks [13]. Complementary work from Cong
et. al. [3] suggested that hierarchical/multilevel methods need
to be used to increase the scalability of placement algorithms
to catch up with the rapid capacity growth in the size of circuit
designs and FPGAs.

To have a high quality multilevel placement, it is important
to be able to intelligently subdivide the design into appropriate
subcomponents. In particular, it is extremely valuable to know
which clusters within a design should be grouped together or
placed near each other to ensure good design performance.
The clusters that are grouped together should have a close
relation with each other and be closely co-located within in
the global circuit placement. Unfortunately, it is difficult to
visualize how the locations of clusters are related within the
final placement because of the growth in FPGA capacity and
circuit design complexity. In this work, we find an algorithm
to extract these closely related clusters in circuits.

Recently, different approaches have been studied to improve
run-time and quality of FPGA placement. We have categorized
these approaches into the following three groups.

Partitioning/Clustering methods
The Ultra-Fast Placement algorithm aims to improve the

run-time of VPR’s Simulated Annealing (SA) [14] placer by

initially performing multi-level clustering [5]. In Ultra-Fast,
the coarse-grain block sizes at each level are fixed to facilitate
the exchange of clusters during the swapping moves in SA. In
our previous work [15], message-passing clustering [16] was
used to create coarse-grain blocks. The coarse-grain blocks
are grown based on a connectivity-based scoring function
determined by two components: the connection between the
blocks and the number of nets that are absorbed if a block is
merged into the coarse-grain block. Each level is performed in
two phases: a phase to build a good initial placement followed
by a low temperature SA phase. We did not assume a fixed
number of clusters per coarse-grain blocks (like the Ultra-Fast
Placement algorithm [5]) or a fixed number of coarse-grain
blocks (like the K-clustering algorithms [17]).

Applying High-level Information
SA based FPGA placement uses random initial placements.

These algorithms do not consider information embedded in
the original design, since circuits are typically flattened before
SA is run. Some previous work in ASIC placers suggest
that high-level information and design hierarchy should be
considered during both clustering [18] and placement [19].
Floorplanning (or hierarchical) approaches to placement, based
on the design’s hierarchy as specified in its RTL have been
introduced [20] and [21]. Cong [22] suggests that RTL
floorplan for FPGAs may not work very well; however, the
quantification of the theory is not provided. In our previous
work [15], the possibility of finding coarse-grain blocks in
the final placement and relating them to high-level structures
such as Module, Always, and If was investigated. Our results
showed that high-level structures are not a good candidate to
partition the design and there is a close relationship between
circuit design and the relations of HDL structures.

Parallel approaches
Parallelization methods are another approach to accelerate

FPGA CAD flow including placement. The objective of this
approach is to ensure that the implementation is scalable to
leverage the number of cores available on modern parallel
machines, while ensuring that the final results are deterministic
independent of the number of processors. There are various
parallel approaches based on simulated annealing including [1]
and [23]. The work presented by Wang et al. [24] achieved
a speedup of 123x when using 25 threads compared to VPR
5.0 [25] with quality degradation of 8% increase in the critical
path delay and a 11% increase in the bounding box metrics.
The work presented in [26] improved the timing-driven parallel
placement algorithm described by [24] by reaching the best
speedup by using only 16 threads instead of 25 threads.

III. HOW TO EXTRACT GEMS?

As stated previously, coarse-grain cluster groupings (e.g.
representing large IP blocks) can be identified from design
files and placed using floor planning algorithms. However,
we hypothesize that medium-grain cluster groupings that do
not encompass the entire design exist, but at present there
is no method for finding these structures. The first step to

finding high-quality medium-grain groupings is to find the
gems in a design: tightly co-located clusters that consistently
occur in placement solutions, impacting the design’s critical
path and/or wirelength when they are ignored. Detecting and
understanding characteristics of these “gems” will help us
to partition designs into coarser grain groupings. We use
Manhattan distance as the proximity measure between clusters
where an FPGA cluster is a group of Basic Logic Elements
(BLEs) [25]. Each cluster has a unique location on FPGA after
placement and the Manhattan distance between cluster(i)
and cluster(j) location on the FPGA is calculated using
Equation 1:
|Xcluster(i) −Xcluster(j)|+ |Ycluster(i) − Ycluster(j)| (1)

Gems are collections of clusters that are closely co-located
and we find these by analyzing proximity in repetitive place-
ments and analyzing clusters based on the following parame-
ters:

• num-run, total number of placement runs which are used
to create gems,

• minimal-distance, threshold manhattan distance to con-
sider a pair of clusters as part of a gem, and

• recurrence, the percentage of the placement solutions that
satisfy a minimal-distance condition.

A. Creating the Proximity Graph
We use a placed design and extract a “proximity graph”,

which we define as an undirected graph where each cluster
is a node in the graph. Each node in the “proximity graph”
is connected if the Manhattan distance of a pair of clusters is
less than or equal to minimal-distance parameter. For example,
selecting a minimal-distance parameter of 3 means that for a
candidate cluster set, each pair of clusters in the set has a
Manhattan distance less than or equal to 3. Doing this for all
clusters creates the “proximity graph”.

Figure 1 shows an example of five clusters placed on
FPGA and their created proximity graph for minimal-distance
parameter of 3. In Figure 1(a), all five clusters are not fully
connected with minimal-distance of 3 because the Manhattan
distance between cluster 3 and cluster 5 is 6, and Manhattan
distance between cluster 4 and cluster 5 is 5, which does
not satisfy the minimal-distance condition. In this example,
clusters 1, 2, 3, and 4 are considered a connected set, and
similarly, clusters 5, 1, and 2 are another. Figure 1(b) shows
proximity graph representing clusters in Figure 1(a).

B. MAX-CLIQUE Algorithm [27] for Extracting Gems
Finding gems is the process of finding fully connected

graphs in the proximity graph created from our placement
files with a specified size (minimal-distance). To find these
gems, we use an algorithm called Max-Clique, which finds
fully connected sub-graphs. A clique is a set of nodes in which
all nodes are connected to each other. A clique clique1 is called
a maximal clique if there is no other clique in the graph that
is a super set of clique1.

Inputs of the algorithm are, R, a set which contains a clique,
P , the set of all the potential nodes not yet in a clique that

(a) Finding a set with 5
clusters

(b) created proximity
graph

Fig. 1. Example of a candidate set with minimal-distance = 3 and its created
proximity graph

should be investigated, and X , the set of all processed nodes
that are included in saved maximal cliques. At the beginning,
P contains all the nodes in the graph, and R and X are empty
sets. Note that X is used to ensure that the algorithm only finds
the maximal cliques. After the first call of the function Clique,
the set P is reduced to only those nodes that are connected to
all the nodes in R.

The algorithm recursively calls itself for the reduced set of
P . When P is empty, the algorithm has found a clique in R.
In that stage, if X is empty it means that R is a maximal
clique, and therefore, R is saved as a gem. In the case that P
is not empty, for each element in P , the new sets of P new,
X new, and R new are created and the function calls itself
with these new parameters. R new contains all nodes in
R plus the element. P new contains all nodes in P minus
exclude(P, element). The function exclude(P, element) is
a set of all nodes in P that are not connected to the element.
X new contains all nodes in X minus exclude(P, element).
After the recursion call, the element is added to X because
the maximal clique is found for it and also element is removed
from P since the investigation is done for the element.

IV. SINGULARITY PLACEMENT

After gem extraction is completed for each benchmark, the
extracted gems are used by our singularity annealing place-
ment. The Singularity Placer (SP) initially maps a mixture of
clusters and gems to physical cluster locations on the FPGA,
without trying to bin or map the gems to specific areas of
the FPGA; instead the gems are expanded during a second
placement phase after which the final placement is legalized.
This is unlike the previously proposed incremental Simulated
Annealing algorithms [28], [29], which move clusters to a bin
structure during the refinement levels.

The pseudo code for Singularity Placement is shown in
Algorithm 1. In detail, the algorithm starts by crushing all the
clusters within a gem to a single cluster called a singularity
cluster (Line 2). Next, the placer places all singularities and
clusters on the FPGA (Line 3). We have used a modified
version of VPR’s SA algorithm to place singularity clusters
and regular clusters (Line 4). The key modification for the SA
algorithm is to provide the annealer with an estimation of the
wirelength and criticality for a singularity cluster. At present,
we use the same model for criticality measurements as VPR

Algorithm 1 Singularity Placement
1: function SINGULARITY PLACEMENT(Circuit Netlist, Ex-

tracted Gems)
2: Create Singularity Clusters
3: Initial Random Placement of Singularity and Regular

Clusters
4: Run Singularity SA
5: Expand Singularity Clusters
6: if Exceeding Column then
7: Shrink COLS
8: end if
9: if Exceeding Row then

10: Shrink ROWS
11: end if
12: Run Low Temperature SA
13: end function

except that we calculate the sum of the criticality of all the
clusters in a gem when a gem is being swapped. This is only
an approximation of the gem’s criticality.

After placing this modified circuit, an expansion phase
is used to assign all of the blocks of the circuit to a real
physical location on the FPGA (Line 5). To achieve this, a
larger intermediate FPGA is used. Each singularity cluster is
expanded in a square-like shape. The location of a singularity
cluster in the intermediate FPGA is adjusted based on other
singularity clusters to avoid any location overlap between
expanding singularity clusters. Therefore, the location of some
blocks may be bigger than an FPGA made to fit the circuit.
When all singularity clusters are expanded with no overlap
and all other blocks are located in empty spaces based on their
original location, the algorithm shrinks the intermediate FPGA
to fit all the blocks in the original FPGA (Lines 6 through 11).
Finally, a temperature SA phase, with fewer iterations is used
to refine the placement of the expanded singularities with
respect to clusters inside and outside the singularity (Line 12).

V. RESULTS

This section describes our experimental methodology and
setup and then discusses the results.

Figure 2(a) shows the traditional FPGA CAD flow that
is used for extracting gems. Each benchmark is passed into
ABC [30] for logic optimization and mapping to Look-Up
Tables (LUTs). Next, T-VPack [31] packs the LUTs and
registers into clusters. The output of T-VPack is then placed
and routed using VPR 5.0 [25]. The FPGA architecture that
we use in these experiments consists of clusters containing
ten (N = 10) 4-input LUTs (K = 4) and the routing is uni-
directional. We have also used the default routing parameters
given with the VPR 5.0 release, specifically: Fcout = 0.1, Fcin

= 0.15, and Fs = 3.

A. Experimental Methodology
Similarly, Figure 2(b) shows the FPGA CAD flow used

in our singularity placement experiments. The same tools
are used to map the benchmarks for placement, and the
same FPGA parameters are used as described above. The key

(a) Traditional FPGA
CAD flow

(b) FPGA CAD flow used in Singularity
Placement

Fig. 2. FPGA CAD flows used in this work

difference between this flow and traditional flow (shown in
Figure 2(a)) is the placement step as described in Section IV.
A gem file is included as part of the singularity annealer for
placement which contains information about the gems.

To detect the critical path delay for each benchmark in both
flows, the size of the FPGA fabric and the routing channel
width (W) are, respectively, set to be 120% of the minimum
FPGA size and 120% of the minimum channel width required
to route each of the benchmark [30]. We also incorporated
fixed I/O location into the placement phase for all runs in
both CAD flows.

Our benchmarks consist of 17 benchmarks, of which 8 of
them are synthetic benchmarks and the rest are open source
benchmarks. The synthetic benchmarks (synth 1 through
synth 8) are generated using a tool published by Mark et
al. [32]. The open source benchmarks that are used in this
experiment are distributed with Odin-II [33]. For both the
traditional flow and the proposed flow, we ran each of the
benchmarks through the placement algorithms ten times with
ten different random seeds to find the average critical path
delay. All experiments are run on servers with 8 core Intel
Xeon CPU (3.16GHz) with dedicated cache and run-time
results are measured in seconds from the time the placement
is started to the point where placement is finished.

B. Benchmark Statistics

Table I provides more information about benchmarks and
gems using following gem parameters: recurrence = 80%,
num-run = 20, and minimal-distance=6. Column 1 contains
the names of the benchmarks, and Columns 2 through 4 list
the number of Clusters, the number of IOs, and number of
gems for each benchmark. Columns 5 shows the percentage
of clusters that are covered by gems in each benchmark. We
have not considered IO blocks to create gems.

Our algorithm can detect gems even for a small minimal-
distance value, confirming that the placement proximity data
contains tightly connected clusters in the benchmarks that are
repeatedly placed close together. By varying the parameters for
creating proximity graph, we can alter the size and “quality” of
the gems that are created for use in the placer. In this paper, the
number of clusters in gems varies between two and seventeen

Fig. 3. Comparison between VPR and Singularity Placer over 10 different runs

TABLE I
BENCHMARKS USING FOLLOWING PARAMETERS: recurrence = 80%,

num-run = 20, AND minimal-distance=6

Benchmark Number of % of covered
Clusters IOs Gems in Gems

cf cordic 18 566 111 105 76
cf fft 258 8 954 69 190 88

diffeq paj convert 396 258 47 34
des area 229 190 26 16

diffeq f systemC 393 162 55 57
oc54 cpu 376 139 56 62

paj raygentop 902 544 149 36
rs decoder2 370 32 61 89

sv chip1 3940 213 765 87
synth 1 2140 930 407 53
synth 2 4959 1398 958 66
synth 3 2637 516 518 75
synth 4 1136 579 230 46
synth 5 3939 1445 819 57
synth 6 1335 1149 209 10
synth 7 2161 785 352 60
synth 8 2290 1535 385 29

because of the parameters that we have considered in gem
extraction.

C. Evaluation of our Singularity Placer
Here we demonstrate that by using a set of gems, the

singularity placer will generate solutions with improved run-
times compared to fine-grain annealing without measurably
impacting the critical path delay on average.

This paper is focusing on small to medium-size cluster
groupings as the percentage of them that are likely to persist
between design iterations is higher. Since there are fewer
clusters per gem and a relatively large number of clusters,
as opposed to a few very large clusters, any small changes in
design logic should have a reduced impact on the persistence
of the majority of gems. For this experiment, gems extracted
based on the parameters listed in the previous section.

Figures 3 shows the experimental results comparing our
algorithm for placing gems and VPR using real (open source)
and synthetic benchmarks. The FPGA size in both experiments
(VPR and our algorithm) is the same. The x-axis lists the
benchmarks and the y-axis shows the normalized results of
the singularity placer compare to VPR for the placement
run-time, critical path delay, minimum channel width and
wirelength. When the value is less than one, it indicates that

singularity placer has a better performance than VPR. The
las two column groups (Average Real and Average Synthetic)
show average placement run-time, critical path delay, mini-
mum channel width and wirelength for real benchmarks and
synthetic benchmarks.

The results show that on average our placement run-time has
been decreased by more than 17% compared to VPR over the
seventeen benchmarks, while roughly maintaining the quality
of placement for the critical path delay on average. Since
this was the objective of the work, it suggests that further
experimentation with parameter choices to determine more
optimal values may not only further reduce run time while
maintaining the critical path delay, but may possibly reduce
the critical path delay. For example, we can better investigate
the effects of varying the parameters for gem clustering; we
can also investigate the scheduling and expansion steps of
the singularity placer more thoroughly. Another parameters
that we will need to investigate for both the traditional and
proposed new flows is the possibility of reducing the SA inner
loop number. Currently, both our singularity SA and VPR SA
use the same inner loop number. It should be possible to reduce
both values slightly without impacting the quality of the final
placement; however, a thorough investigation is left to future
work. Over the seventeen benchmarks, the minimum channel
width increased slightly to 2% and the wirelength to 6.3%. We
expect that this is the cost of maintaining the critical path delay
for our proposed approach as the singularity placer will tend
to result in slightly more compact designs than the traditional
VPR flow- leading to greater congestion.

D. A Test case for incremental design
We ran a benchmark through our CAD flow and cre-

ated gems with following parameters: recurrence=80%, num-
run=20, and minimal-distance=6. We then added another
module to the design by inserting flip flop between output
of the first design and input of the added module in netlist.
We reran the new design through our singularity CAD flow
using the gems created from the original design. The results,
averaged over 10 different runs, demonstrated a 30% decrease
in placement run-time while maintaining the critical path delay
and increasing minimum channel width and wirelength by
19% and 13%, respectively.

VI. CONCLUSION AND FUTURE WORK

In this paper, gems are defined as closely related clusters in
designs with two characteristics: 1) the clusters in a gem are
co-located with a small Manhattan distance separating them
from each other, and 2) gems cover a portion of the circuit,
but their relationship is the key to placement quality (critical
path and/or wirelength). We have used different parameters:
minimal-distance, num-run, and recurrence to create a prox-
imity graph, that then can be used to find gems using a Max-
Clique algorithm.

We illustrate that post-placement proximity data can be
evaluated to create gems, similar to partitioning and clustering
algorithms that analyze netlists. However, not only does our
approach analyze post-placement data, but it generates het-
erogeneous cluster groupings, without having to partition the
entire design. This non-aggressive approach to clustering then
allows the placer to swap larger groupings. We demonstrated
a novel two phase placer, called the singularity annealer for
using gems to improve placement run time by an average of
17.7% for our sample benchmarks and 17.3% for our synthetic
benchmarks with minimally improved critical path delays on
average. On average, the minimum channel width increased
by 6.3% for the sample benchmarks and decreased by 2.8%
for the synthetic benchmarks, for an overall average increase
of 2%. Wirelength has increased on average by 9.0% on
real benchmarks and 3.3% for synthetic benchmarks, for an
overall average increase of 6.3%. These results suggest that
we may achieve more significant gains in run time and/or
circuit quality (i.e. critical path delay/channel width) after
future investigations into the tradeoffs of various parameter
settings generating gems and tuning the singularity placer.

There are a numerous opportunities for future work. In
particular, we are interested in the following areas. First,
can we apply our approach to clustering on netlist data to
reduce compilation time while maintaining quality. Second,
how does our approach to clustering compare to global
clustering/partitioning algorithms such as iRAC [34] and
hMETIS [35]. Finally, we wish to further investigate the
creation of gems and their affects on placement by varying
different parameters such as the size of gems, the inner-num
values of SA.

REFERENCES

[1] A.Ludwin, V.Betz et al., “High-quality, deterministic parallel placement
for fpgas on commodity hardware,” in Proceedings of the 16th Interna-
tional ACM/SIGDA Symposium on FPGAs, 2008, pp. 14–23.

[2] V.Betz, J.Rose et al., Architecture and CAD for Deep-Submicron FPGAs.
Kluwer Academic Publishers, 1999.

[3] J.Cong, J. R.Shinnerl et al., “Large-scale circuit placement,” ACM
Transactions on Design Automation of Electronic Systems, vol. 10, no. 2,
pp. 1–42, 2005.

[4] S.Chin and S.Wilton, “Towards scalable fpga cad through architecture,”
in ACM Int’l Symp on FPGAs, 2011, pp. 143–152.

[5] Y.Sankar and J.Rose, “Trading quality for compile time: ultra-fast
placement for fpgas,” in Int’l Symp on FPGAs, 1999, pp. 157–166.

[6] C.Lavin, M.Padilla et al., “Using hard macros to reduce fpga compilation
time,” in on the Proc. of the FPL, 2010, pp. 438–441.

[7] C. C.Chang, J.Cong et al., “Optimality and scalability study of existing
placement algorithms,” in In Proc of the ASP-DAC, 2003, pp. 621–627.

[8] M.Wang, X.Yang et al., “Dragon2000: Standard-cell placement tool for
large industry circuits,” in In Proc. of the IEEE Int’l Conf on CAD,
2000, pp. 260–264.

[9] A. E.Caldwell, A. B.Kahng et al., “Can recursive bisection produce
routable placements?” in In Proc of DAC, 2000, pp. 477–482.

[10] T. F.Chan, J.Cong et al., “An enhanced multilevel algorithm for circuit
placement,” in In Proc of the IEEE Int’l Conf on Computer-Aided
Design, 2003.

[11] C. D. S.Inc, “Qplace version 5.1.55, compiled on 10/25/1999,” in Envisia
ultra placer reference, 1999.

[12] J.Cong, M.Romesis et al., “Optimality and stability of timing-driven
placement algorithms,” in In Proceedings of the IEEE International
Conference on Computer Aided Design, 2003.

[13] ——, “Optimality, scalability and stability study of partitioning and
placement algorithms,” in In Proceedings of the International Sympo-
sium on Physical Design, 2003, pp. 88–94.

[14] S.Kirkpatrick, C. D.Gelatt et al., “Optimization by Simulated Anneal-
ing,” Science, vol. 220, no. 4598, pp. 671–680, May 1983.

[15] F.Gharibian, L.Shannon et al., “Analyzing system-level informations
correlation to fpga placement,” ACM Transactions on Reconfigurable
Technology and Systems, vol. 6, no. 3, October 2013.

[16] B. J.Frey and D.Dueck, “Clustering by passing messages between data
points,,” in Science, vol. 315, Feb. 2007, pp. 972–976.

[17] J. B.MacQueen, “Some methods for classification and analysis of multi-
variate observations,” in Proceedings of the fifth Berkeley Symposium on
Mathematical Statistics and Probability, vol. 1. University of California
Press, 1967, pp. 281–297.

[18] D.Behrens, K.Harbich et al., “Circuit partitioning using high-level
design information,” in Conference on Integrated Design - process
Technology, 1996, pp. 259–266.

[19] Y. W.Tsay, W. J.Fang et al., “Preserving hdl synthesis hierarchy for
cell placement,” Proceedings of the 1997 International Symposium on
Physical design, pp. 169–174, 1997.

[20] J. M.Emmert and D.Bhatia, “A methodology for fast fpga floorplanning,”
in FPGA 1999.

[21] R.Tessier, “Fast placement approaches for fpgas,” ACM Trans. on Design
Automation of Electronic Systems, vol. 7, no. 2, pp. 284–305, April 2002.

[22] J.Cong, “Timing closure based on physical hierarchy,” in Proceedings
of the International Symposium on Physical Design, 2002, pp. 170–174.

[23] M.Haldar, A.Nayak et al., “Parallel algorithms for fpga placement,” in
10th Great Lakes Symposium on VLSI, 2000, pp. 86–94.

[24] C.Wang and G.Lemieux, “Scalable and deterministic timing-driven
parallel placement for fpgas,” in In Proc of the 19th ACM/SIGDA Int’l
Symp on FPGAs, 2011, pp. 153–162.

[25] J.Luu, I.Kuon et al., “VPR 5.0: FPGA CAD and Architecture xploration
Tools with Single-Driver Routing, Heterogeneity and Process Scaling,”
in ACM/SIGDA International Symposium on FPGAs, Feb 2009.

[26] J.Goeders, G.Lemieux et al., “Deterministic timing-driven parallel place-
ment by simulated annealing using half-box window decomposition,” in
ReConFig, 2011, pp. 41–48.

[27] C.Bron and J.Kerbosch, “Algorithm 457: Finding all cliques of an
undirected graph,” ommunications of the ACM, ACM Press: New York,
USA., vol. 16, no. 9, pp. 575–577, 1973.

[28] C.c.Chang, I.Cong et al., “Multi-level placement for large-scale mixed-
size ic designs,” in ASPDAC 2003, 2003, pp. 325–330.

[29] C.-C.Chang, J.Cong et al., “Physical hierarchy generation with routing
congestion control,” in In ACM/SIGDA International Symposium on
Physical Design (ISPD), 2002, pp. 36–41.

[30] A.Mishchenko, S.Chatterjee et al., “Improvements to technology map-
ping for LUT-based FPGAs,” IEEE Transactions on CAD, vol. 26, no. 2,
pp. 240–253, 2007.

[31] A.Marquardt, V.Betz et al., “Using Cluster-Based Logic Blocks and
Timing-Driven Packing to Improve FPGA Speed and Density,” in
ACM/SIGDA Int’l Symp on FPGAs, Monterey, CA, 1999, pp. 37–46.

[32] C.Mark, A.Shui et al., “A system-level stochastic circuit generator for
fpga architecture evaluation,” in FPT 2008, pp. 25–32.

[33] P. A.Jamieson, K. B.Kent et al., “Odin II - An Open-source Verilog HDL
Synthesis Tool for Academic CAD Flows,” in IEEE Symp on FCCM,
2010.

[34] A.Singh and M.Marek-Sadowska, “Efficient Circuit Clustering for Area
and Power Reduction in FPGAs,” in FPGA 2002, pp. 59–66.

[35] G.Karypis, R.Aggarwal et al., “Multilevel Hypergraph Partitioning:
Application in VLSI Domain,” in DAC ’97: Proceedings of the 34th
ACM/IEEE conference on Design automation, 1997, pp. 526–529.

