
Transforming Ladder Logic to Verilog for FPGA
Realization of Programmable Logic Controllers

Giancarlo Corti
Department Mechanical and
Manufacturing Engineering

Miami University
Oxford, Ohio 45056

Email: corticlg@miamioh.edu

Drake Brunner, Naoki Mizuno, and Peter Jamieson
Department of Electrical and

Computer Engineering
Miami University

Oxford, Ohio 45056
Email: jamiespa@miamioh.edu

Abstract—Programmable Logic Controllers (PLCs) are used
in many industrial settings to control and automate machinery
in a manufacturing process. Typically, these devices are pro-
grammed in ladder logic, which is used to define the logical
control of connected machines in parallel. The resulting system
needs to control machines in the millisecond time domain, and
therefore, PLCs can implement what appears to be millisecond
parallel control by emulating the logic with GHz processing
capabilities of modern processors. This system solution works, but
PLCs are expensive and cannot support all design implementa-
tions, and our work begins to support a community examination
to replace the control computation resources with FPGAs. The
reason for this shift in technology is FPGAs are by nature parallel,
programmable (reconfigurable), low cost, and have a high pin
capacity, which makes them excellent substitutes for PLCs. To
evaluate this, however, the first step is to build a tool that converts
ladder logic to a format mappable to FPGAs. For this, we have
created an open-source tool called, Hashigo, that converts ladder
logic to synthesizable Verilog. In this work, the tool is used to
convert a ladder logic design to Verilog that is then mapped
to an FPGA, and we verify that the resulting FPGA control is
equivalent to that of the same benchmark implemented on an
existing commercial PLC. For the benefit of the community, this
software is released to the community as open-source so that both
academic and commercial possibilities in this technology can be
further advanced.

I. INTRODUCTION
Programmable Logic Controllers (PLCs) were introduced

to the manufacturing industry to replace large relay circuits
used as control devices. This adds a huge benefit of flexibility
to industrial control since the control can be more easily
changed. Programmable controllers are, typically, connected
to industrial equipment such as assembly lines and machine
tools to sequentially operate the system in accordance with a
stored control program [1]. PLCs implement the parallel logic
analysis via processors working at GHz speeds to emulate
microsecond logic operations, and these devices are used since
they can be reprogrammed instead of rewired or adding new
complex control circuitry to an existing design.

To make the transition from relays to PLCs intuitive to
engineers who designed and built the relay control circuitry, a
programming language called ladder logic was created. This
language is essentially a circuit diagram of the equivalent relay
logic. Ladder logic has been a popular programming language
for PLCs ever since.

There are, however, fundamental differences between relay

circuits and PLCs. Relay circuits operate under the control of
combinational logic and execute in parallel with other relay
circuits. Each relay functions on its own, changing states as
fast as changes occur at the inputs. PLCs, on the other hand,
use a sequential processor that only completes roughly an
operation per clock cycle, and therefore the PLC needs to
emulate the relay circuitry that it replaces, and does so at faster
speeds than the relays so that it appears that the control is
done in parallel. This is a common approach similar to that of
video games making games appear to be animated, but merely
presenting static pictures at a rate that humans cannot perceive
the difference between the static images.

This can create some challenges for performance as the
complexity of the control increases. To emulate relay logic,
the PLC runs a repetitive emulation cycle that includes reading
inputs, executing logic, and the updating outputs. The logic is
scanned rung by rung (where a rung is a logical calculation)
and coil by coil to determine the output. The cyclical nature
means that the PLC is not performing real-time control, and
as both the number of rungs and complexity of each rung
increases the computational load on the PLC increases. Ad-
ditionally, PLCs are expensive systems to purchase including
the software support and service for these devices.

The reality of ladder logic is that when looked at from
a digital system perspective is that basically the ladder logic
is a set of logical statements. This means that the FPGA can
implement the logic directly on its programmable logic fabric
such that the processing can be done in real-time similar to
the original relay circuits. Not only can FPGAs better handle
the increasing complexity of control designs, but these devices
are relatively inexpensive when compared to PLCs and have
a high pin count to handle the input/output demand. The
limiting factor with FPGAs is that the engineers designing
the control are far from being familiar with typical FPGA
hardware design using either schematic design or Hardware
Description Language (HDL) design. The expertise needed to
create their algorithms on an FPGA is not worth their time.

For this reason, our work presents and contributes an open-
source compilation tool called, Hashigo, that takes ladder logic
and converts it into synthesizable Verilog. This conversion
allows the converted design to be mapped into a typical
FPGA CAD flow that then creates a programmable file that
can be mapped to an FPGA. With our tool we show how a
ladder logic benchmark can be mapped to both a commercial



PLC and an FPGA prototype board. This demonstrates the
tools correctness and also demonstrates how a cheap FPGA
prototyping board can easily handle a real-time load of a ladder
logic benchmark. Additionally, we release this tool as open-
source so that other researchers and commercial entities can
advance the possibilities for this implementation.

The remainder of this paper is organized as follows:
Section II describes the existing work in this domain. Section
III describes how Hashigo is implemented, and Section IV
describes our benchmark and its implementation on both an
FPGA prototyping board and a commercial PLC. Finally, V
concludes the paper and describes future directions.

II. BACKGROUND
This work is not the first foray into PLC-like implemen-

tation on FPGAs. A number of researchers have and are
still working on how reconfigurable devices can be used to
implement ladder logic.

The first attempt at implementing control on Programmable
Logic Devices (PLDs) was by Adamski and Monteiro [2]
where they viewed the control problem from the perspective of
petri nets. In their work, the goal is purely to implement control
on a PLD and not to convert existing PLC designs over to a
PLD. They followed up this work with a later publication [3]
that improved on their technique. Also, this work was further
extended with Wegrzyn et al. [4] where they used the petri
net descriptions, but now mapped their design to VHDL [5]
so that they could target commercial CAD flows which map
to devices such as FPGAs and Application Specific Integrated
Chips (ASICs).

Soon after Petko and Karpiel [6] developed another tech-
nique to create control algorithms for FPGAs and ASICs and
map them to simulink so that their complete system environ-
ment could be simulated both electrically and mechanically.
Their methodology is not a completely autonomous flow, but
they provide a number of steps, both automated and manually
done, to map their control designs to a silicon implementation
in either target language - Verilog or VHDL. The input to
their system, however, is not something like ladder logic,
and instead, the complete control is designed by an engineer
familiar with their flow.

More recently, Economakos and Economakos [7] [8] devel-
oped a fully automated flow that takes in a PLC language input
(Siemens Statement List programming language of the well-
known Simatic S7-300/400 PLCs) and converts a design to a
C implementation. With the C language implementation they
then input the design into the Catapult C tool flow created by
Mentor Graphics that can target FPGAs. Their main motivation
is to efficiently implement more complex control designs that
may not be feasibly implemented on a PLC.

Du et al. work [9] is the most similar to this work in
that they create a tool to map ladder logic to VHDL. Their
motivation is to improve performance by using an FPGA and
they target Xilinx FPGAs, specifically. The limitation with
their work is the tool is not open-source and so there has been
no continuance or commercialization of their original work.

Finally, Milik [10] has created a flow from IEC61131-
3 ladder logic design to FPGAs via Verilog as the CAD
flow design entry language. Millik spends significant time on
optimizations in the conversion using compile-time approaches
such as building a directed flow graph and analyzing these
graphs. This, arguably, is the most advanced tool in this

research progression, but the tool is not available to the public,
and we believe this is a crucial step if FPGAs are ever to
become a competitive technology in manufacturing design in
competition with PLCs.

In addition to control designs mapped to FPGA, this work
is built with similar ideas and philosophies for open-source
tool flows in the FPGA domain such as Icarus [11] and [12],
which are open source tools for Verilog compilation for both
emulation and synthesis, respectively. Tools such as VTR [13]
and [14] are other open-source FPGA CAD tools that have
helped our communities due to their easy and open access.

III. HASHIGO
Hashigo is an open-source compiler that converts ladder

logic designs, typically, designed and compiled for PLCs,
into synthesizable Verilog that can target any silicon-based
CAD flow (such as FPGAs and ASICs). In particular, the
intended target for this tool is an FPGA CAD flow since
this implementation makes the most sense due to the FPGAs
reprogrammable characteristic. In this section, we will describe
the details of this tool including some of the technologies that
were used.

0: [XIC(Local:3:I.Data.0), XIO(Local:3:O.Data.0)] OTE(Local:4:O.Data.1);

Segment Address

Parallel Sequence

Instruction
Rung id

Block

Rung

Fig. 1. A language breakdown of the HIL for Hashigo

Hashigo (which means “ladder” in Japanese) is built as a
typical source to source compiler. The input language is ladder
logic in an XML readable format. Specifically, our flow starts
with an export of the ladder logic file from AllenBradley’s
RSLogix 5000 IDE to an XML file. Using the pugixml
(http://pugixml.org/) XML parsing library we first convert the
XML design into an intermediate language called Hashigo
Intermediate Language (HIL) where files have “hshg” suffix
to identify these. The reason for including this intermediate
step instead of just parsing the XML directly is that this allows
for other industrial tool flows to convert their designs, whether
from XML or another output format, into the HIL format to be
compatible with our tool. Figure 1 shows some of the language
breakdown for the HIL where a rung of ladder logic is a
single statement that internally has instructions and ordering
that defines the logic, instructions, and naming.

The HIL format is then read into Hashigo. This conversion
step is a typical compilation process in C/C++ where the Bison
[15] and Flex [16] tools are used to parse the HIL grammar
into an Abstract Syntax Tree (AST) and symbol table. Once
the design is parsed into these two data structures the tool can
perform any optimizations or transformations, but at present
we do not consider any optimizations since we want to keep
the tool both simple and operational for other researchers as
their starting framework.

To generate the synthesizable Verilog, we traverse the AST
and output the Verilog. Since ladder logic is relatively simple
in terms of being logical descriptions the Verilog design is
not very complex and is simply a finite state machine which
implements the logic for an emulation cycle of the control. The



most complex components in ladder logic designs are timers
that can be easily implemented in sequential logic. The only
additional parameter needed to handle timers is the tool needs
knowledge of the synthesized clock speed to adjust timing
steps.

OUTPUT/INPUT – XML of 
Ladder Logic

XML conversion to HIL

Parse (Bison & Flex)

OUTPUT/INPUT – Hashigo 
Intermediate Language (HIL)

Optional Optimizations

Traverse and create target 
HDL

OUTPUT – Verilog HDL

INPUT – Ladder Logic

Commercial Tool Output

Fig. 2. A flow diagram of the Hashigo steps and input/outputs

Figure 2 summarizes the above steps where yellow boxes
are for inputs and outputs, orange boxes are for steps currently
implemented in Hashigo in the open-source release, and a clear
box is where optional optimizations could be performed. Our
code is written in C++ and the needed libraries for compilation
are typical compiler libraries including Bison and Flex as
described above.

Figure 3 shows an expanded flow in Figure 2 except the
inputs and outputs now show an example design progressing in
each of the yellow boxes. First, we start with a simple two rung
ladder logic diagram. Next, we show a sample of how the XML
looks like for this sample. In the next two boxes, the HIL and
a Verilog design are provided as the design progresses through
the flow. Though this is not an overly complex example, the
example shows how the data is processed through the tool.

IV. BENCHMARK VERIFICATION
The goal of this work is to create an open-source tool that

converts ladder logic to synthesizable Verilog. This section
describes the benchmark we have created to both verify that
our tool works and test the features supported by our tool.

The benchmark we provide with the tool is a car wash
control circuit that includes 10 rungs of ladder logic and in-
cludes 3 timers and 1 loop control state. First, we implemented
this benchmark in ladder logic in RSLogix 5000 IDE and then
mapped it to execute on the Control Logix5000 PLC to observe
both the functionality and verify that our benchmark worked.

We chose this tool flow because we have both the software
and hardware in house, but our design approach attempts to be
general enough so that any industrial flow could be supported
with some additional implementation to get the ladder logic
(or similar design) into our HIL format as described earlier.

TABLE I. RESOURCE USAGE OF THE CAR WASH BENCHMARK ON A
CYCLONE IV FPGA

Resource Report
Logic Elements 267 Logic Elements (<1% of FPGA)

Clock Speed 156.57 MHz

Next, we used our tool-flow to create synthesizable Verilog
once the RSLogix 5000 IDE outputs the design as an XML
file. Progressing through the flow, as described in the previous
section, our final output is a Verilog file that implements the
benchmark. We include this design as part of a design in
Altera’s (Intel) FPGA flow in Quartus 13.1 [17] targeting DE2-
115 FPGA prototyping boards. These boards are created and
manufactured by Terasic and include a Cyclone IV FPGA
clocked at 50MHz. Table I shows both the area consumption
and operating frequency of our design when mapped through
this flow. Note, as stated earlier ladder logic control is not
necessarily overly complex, and a Cyclone (which is a low-
end FPGA in terms of cost, size, and performance) can easily
implement this benchmark. This is not to say that more
complex designs will always map to an FPGA implementation
at the required speed, but rather, the idea of using FPGAs is
highly feasible option that may be more efficient in terms of
both cost and performance.

Finally, we program the design to the FPGA and verify
that the operation of the benchmark matches that of the PLC
to demonstrate that our implementation is correct.

V. DISCUSSION AND CONCLUSION
In this work, we presented, Hashigo, a tool to convert

ladder logic to synthesizable Verilog with the intention of
mapping the control to FPGAs as a replacement for PLCs. The
main purpose of this work is to provide commercial interests
and researchers with an open-source tool that can map ladder
logic (in theory from any tool flow with some modification) to
an implementation on an FPGA. We described the design of
our tool, some of the choices we made, and implementation
details. Finally, we verified that our tool works by mapping
a benchmark to both an industrial PLC and an FPGA, and
observed that the control sequence was equivalent.

The immediate next step in this work is to implement an
FPGA controlled system that uses our design tool into an
automated device. This involves controlling external power
supplies via the FPGA outputs to activate transistors or relays
that then are connected to actuators. From the input perspective
we also need to interface the FPGA with sensors to allow for
both input and feedback signals from the system.

An alternative future direction would be to support all
PLC input languages such as ladder logic, structured text,
functional block diagram, and sequential function chart and
all the functionality associated with each language. However,
functionality and syntax varies among each brand of PLC and
this would be a major challenge that might be best supported
as a community as opposed to individual efforts.

Another aspect that can be improved is regarding opti-
mizations that can be made to designs under certain scenarios



XML conversion to HIL

Parse (Bison & Flex)

Traverse and create target 
HDL

INPUT – Ladder Logic Commercial Tool Output
A B O

C

D

P

OUTPUT/INPUT – XML of Ladder Logic
<Routine Name=”MainRoutine”>

<Rung Number = “0” >
<SEQ(INC(A),INC(B))OUT(O)>

</Rung>
<Rung Number = “1” >

<PAR(INC(C),INC(D))OUT(P)>
</Rung>

</Routine>

OUTPUT/INPUT – HIL

0: XIC(A) XIO(B) OTE(O);
1: [XIC(C) XIC(D)] OTE(P);

OUTPUT – Verilog HDL

always@(*) begin
o = a & ~b;
p = c | d;

end

Fig. 3. The flow with example inputs and outputs for the stages

including the range of compiler optimizations that exist. One
of these scenarios, for example, happens when there are no
latches in the control design. This occurs when there are no
data dependencies in the ladder logic program, and this implies
that a purely combinational design can be implemented in
the Verilog. This ensures that the functionalities from ladder
logic are preserved while making the design scalable, since
the required clock speed does not depend on the number of
rungs but rather the delay of the longest rung as implemented
by logic.

As one of the key deliverables with this work is the tool
itself, researchers are welcome to download and use/modify
our software from https://github.com/NigoroJr/hashigo.

REFERENCES

[1] E. Dummermuth, “Programmable logic controller,” 1976, uS Patent
3,942,158.

[2] M. A. Adamski and J. L. Monteiro, “Pld implementation of logic
controllers,” in Industrial Electronics, 1995. ISIE’95., Proceedings of
the IEEE International Symposium on, vol. 2. IEEE, 1995, pp. 706–
711.

[3] M. Adamski and J. L. Monteiro, “From interpreted petri net specifi-
cation to reprogrammable logic controller design,” in Industrial Elec-
tronics, 2000. ISIE 2000. Proceedings of the 2000 IEEE International
Symposium on, vol. 1. IEEE, 2000, pp. 13–19.

[4] M. Wegrzyn, M. A. Adamski, and J. L. Monteiro, “The application of
reconfigurable logic to controller design,” Control Engineering Practice,
vol. 6, no. 7, pp. 879–887, 1998.

[5] IEEE Standard VHDL Language Reference Manual, IEEE, 1987.
[6] M. Petko and G. Karpiel, “Semi-automatic implementation of control

algorithms in asic/fpga.” in ETFA (1), 2003, pp. 427–433.
[7] C. Economakos and G. Economakos, “Fpga implementation of plc

programs using automated high-level synthesis tools,” in Industrial

Electronics, 2008. ISIE 2008. IEEE International Symposium on. IEEE,
2008, pp. 1908–1913.

[8] ——, “Optimized fpga implementations of demanding plc programs
based on hardware high-level synthesis,” in Emerging Technologies and
Factory Automation, 2008. ETFA 2008. IEEE International Conference
on. IEEE, 2008, pp. 1002–1009.

[9] D. Du, X. Xu, and K. Yamazaki, “A study on the generation of
silicon-based hardware plc by means of the direct conversion of the
ladder diagram to circuit design language,” The International Journal
of Advanced Manufacturing Technology, vol. 49, no. 5-8, pp. 615–626,
2010.

[10] A. Milik, “On hardware synthesis and implementation of plc programs
in fpgas,” Microprocessors and Microsystems, 2016.

[11] S. Williams, “ICARUS Verilog at http://www.icarus.com/eda/verilog/,”
2007.

[12] P. Jamieson, K. B. Kent, F. Gharibian, and L. Shannon, “Odin II
- An Open-source Verilog HDL Synthesis tool for CAD Research,”
in Proceedings of the IEEE Symposium on Field-Programmable
Custom Computing Machines, 2010, pp. 149–156. [Online]. Available:
http://www.computer.org/portal/web/csdl/doi/10.1109/FCCM.2010.31

[13] J. Rose, J. Luu, C. Yu, O. Densmore, J. Goeders, A. Somerville, K. Kent,
P. Jamieson, and J. Anderson, “The vtr project: architecture and cad
for fpgas from verilog to routing,” in Proceedings of the ACM/SIGDA
international symposium on Field Programmable Gate Arrays, 2012, pp.
77–86. [Online]. Available: http://dl.acm.org/citation.cfm?id=2145708

[14] A. Mishchenko, S. Chatterjee, and R. K. Brayton, “Improvements
to technology mapping for LUT-based FPGAs,” IEEE Transactions
on CAD, vol. 26, no. 2, pp. 240–253, 2007. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.68.9003

[15] GNU, “Bison - GNU parser generator,” 2009. [Online]. Available:
\url{http://www.gnu.org/software/bison/}

[16] Vern Paxson, “The Lex & Yacc Page,” 2009. [Online]. Available:
\url{http://dinosaur.compilertools.net/flex/index.html}

[17] Altera, Quartus II Handbook, Volumes 1, 2, and 3, 2004.


