
A case study: Undergraduate self-learning in HPC
including OpenMP, MPI, OpenCL, and FPGAs

Peter Jamieson
Department of ECE

Miami University
Email: jamiespa@miamioh.edu

Martin Herbordt and Michel Kinsy
Department of ECE

Boston University
Email: herbordt@ mkinsy@ bu.edu

Abstract—High Performance Computing (HPC) continues to
develop and encroach on higher-education in the computing
fields. With the ubiquitous availability and growth in commercial
cloud computing and the diminishing performance returns on se-
quential programs, many developers must be able to understand
and exploit parallel computing paradigms for certain applica-
tions. Focusing on Computer Engineering undergraduates, who
arguably, will be future leaders in these parallel domains, the
CE2016 recommended curriculum [1] has a number of hours
dedicated for parallel and distributed computing where approx-
imately 10 core hours are to be taught in parallel programming,
other ideas are taught in and among networking and embedded
systems, and an entire section on digital design (50 hours). In
reality, this is not enough time to become competent in the
broader HPC field, nor do we expect standard undergraduate
curriculum to develop competent undergraduate into parallel
programmers.

However, as demand increases for HPC developers, one won-
ders how students will attain this knowledge. Many people learn
HPC competencies in graduate work and industrial work, but
what might be done early. In this paper, we look at what
a developer can possibly learn in the HPC world, and what
tools and understanding is needed to build and experiment with
parallel implementations. Our goal is to look at aspects of HPC
given the constraints of a typical laptop, and we ask what can
a developer test and learn about on their system in the HPC
domain. The benefits of this work is a better understanding
of what tool sets students will need to understand to develop
simple parallel implementations, what HPC platforms can be
used for courses or personalized learning, and we provide a basic
framework and code samples for people to start from.

I. INTRODUCTION

High Performance Computing (HPC) is a broad field that
can include many computation architectures (including clus-
ters, parallel machines, DSP processors, ASICs, and FPGAs)
and many development platforms, programming models, and
design languages [2]. Accelerating computation is complex,
and for any given application and a target architecture it can
take experts many weeks and months to improve performance
(where performance can be a measure of execution time,
power, cost, and other parameters).

As the need for accelerated computation increases, there is
an accompanying need for developers who can work in this
domain. So far, this need has been satisfied by the computing
fields via training in graduate school and industrial settings.
The question remains, can undergraduates prepare themselves

to work in this domain, and if so, what tools and platforms
can they, currently, learn about and access.

This work takes a look at this problem by taking a particular
application, Conway’s Game of Life [3], and implementing
it across a number of typical (and less typical) HPC target
platforms. This includes creating and running implementations
of the benchmark in C on a single CPU, a shared memory
C implementation using OpenMP on a number of CPUs, a
message passing C implementation using MPI on a number
of CPUs, a C OpenCL implementation targeting a CPU host
and GPU execution engine, and a Verilog HDL (Hardware
Description Language) implementation targeting an FPGA.

This work provides two additional artifacts. First, while
doing this exercise we create a list of open source and
commercial tools that were used, and that a learner should,
probably, become competent with. Second, the result of this
process is a sample benchmark with multiple implementations
that a learner can access to model their own experimenta-
tion. Additionally, we provide some details on what type of
benchmarking can be done within this HPC exploration for
learning, but do not deal with the topic of optimization for
these platforms. This provides a methodology to do basic
benchmarking and comparison. This type of optimization
work requires significant effort and is left to researchers and
educators in each of these particular HPC target domains.

Finally, we provide some insights on working in this do-
main in terms of debugging and building benchmarks. This
“wisdom” was gained by experiencing the exercise, and these
lessons might save developers and learners some of their own
time. We have extracted these insights from our work, but
suggest to the learners that some insights are only learned
by performing a similar exploration exercise. In this vein,
we provide a suggested list of other applications to try to
accelerate on the various platforms.

The remainder of this paper is organized as follow: Section
II describes some background into what HPC and acceleration
are and existing resources and research in this domain. Section
III describes our benchmark and it’s base implementation in
C. Section IV we describe each of the accelerated imple-
mentations in terms of the target system and tools needed to
implement them. Section V shows the benchmarking method-
ology we adopted and what results we could obtain for each
of our designs. Section VI gives some context to this work,



and finally, section VII provides a conclusion to this work and
future work.

II. BACKGROUND - HPC AND ACCELERATION IN
COMPUTER ENGINEERING EDUCATION

HPC is a broad field that continues to expand as the demand
for more and faster computation increases. The vast array of
target devices and ways of designing for these is itself broad
and there are a number of researchers who have examined
performance differences among different platforms [4] [5]. In
higher education, there have been a number of educators/re-
searchers who have created, examined, and contributed to how
to teach HPC to computer engineering undergraduates, which
we hope to compliment.

In 1995, Nevison wondered how to include parallel compu-
tation in undergraduate education [6]. Since then, traditional
parallel development on parallel systems has become more and
more accessible to undergraduates because the price of parallel
systems, including single chip multi-core systems [7], are
more affordable for the average consumer. Even before this,
researchers were proposing student educational experiences in
MPI [8] and shared memory programming models [9]. Since
then, parallel programming has been an educational research
question for many including the following paper [10] (note that
this is only a small set of researchers exploring this domain).
The need to learn about parallel computing has gone beyond
just computing majors and is a topic of interest for scientists
and their simulations and models [11].

In addition to traditional parallel systems, the GPU has
emerged as a popular acceleration device, and therefore, how
to teach students to use these devices is of interest [12].
Similarly, FPGAs are programmable hardware fabrics that
continue to compete with both CPU and GPU as a choice for
application acceleration, and educators have wondered what
should be taught on this target device [13]. Traditional VLSI
knowledge has been pushed out of the computer engineering
undergraduate curriculum and replaced with the need to teach
FPGA and digital design skills with a focus on hardware
description languages (HDL) [14], [15].

Finally, the emergence of cloud computing, which also has
been contemplated in terms of education [16], researchers have
began to question how a heterogeneous mix of devices can be
used. For example, the OpenCL [17] programming model has
been introduced where a host spawns off kernels on an array
of heterogeneous cores including CPUs, GPUs, and FPGAs.
This brings even more questions of what skills and experiences
should be exposed to undergraduates.

Our work in this paper, as compared to more modern
research differs in the main goal. If we look at recent parallel
education research at major universities [18] (MIT) and [19]
(ETH), then we see how these places and their curriculum
can have a significant parallel education component due to
human and computing resources, allowing them to ask what
and how parallel concepts can be taught. Smaller universities
[20] can still participate in this type of research, but, typically,
the focus is on creating new tools and lessons that access

HPC as resources are limited. Our work focuses on what
low-cost approaches to working with HPC are possible at
present, which we think will help the smaller schools while
still allowing students at larger schools to work on their own
parallel programming skills.

The HPC world continues to expand, and this means that
the the skill set and knowledge that developers need is also
expanding. Our work looks at what platforms are easily ac-
cessible for undergraduates to begin to explore and understand
the development platforms and target devices independent of
what their universities offer. This differs, significantly, from
the above related work in that we are focusing on taking
a snapshot of current technology and asking, ”What can an
undergraduate implement locally on their machine?”. Previous
work is focused on what can be taught in the university setting
with the resources of the university, and what are the best
methods to teach parallel concepts?

III. CONWAY’S GAME OF LIFE AS THE APPLICATION

Conway’s Game of Life [3] is the application we implement
on a number of parallel and acceleration platforms. This
application is an example of cellular automaton that can also
be classified as one of the simplest form of agent based
simulation where each cell is it’s own entity that is either
ALIVE or DEAD at each time step of simulation based on
some rules. The cells in our implementation are part of a 2D
grid where each cell has eight neighbours.

Cell x is ALIVE or DEAD for time step t+1 based on the
the following rules:

1) Any cell(x) that is ALIVE at t becomes DEAD at t+1
if less than two neighbours are ALIVE

2) Any cell(x) that is ALIVE at t becomes DEAD at t+1
if less greater than three neighbours are ALIVE

3) Any cell(x) that is ALIVE at t stays ALIVE at t+ 1 if
their are two or three neighbours ALIVE

4) Any cell(x) that is DEAD at t becomes ALIVE at t+1
if exactly three neighbours are ALIVE

For our implementations of Conway’s game of life, we
consider the 2D grid to be a toroidal array such that the top
and bottom rows are adjacent and, similarly, the left and right
most columns are adjacent when calculating neighbour state.
In terms of a computation problem, it can be considered a
sliding window calculations [5] and is generally classified as
a structured grid in the parallel dwarfs [21].

Our initial implementation is written in C and executed on
a single CPU, and the program sequentially iterates through
each cell and updates the respective state for each simulation
tick or frame.

There are a few properties of importance in this application
and we will describe them based on taxonomies from simula-
tion [22] and agent based simulation [23]. Specifically, Con-
way’s game of life is a closed, deterministic, homogeneous,
discrete-event, time-driven simulation environment where the
individual agent perceives locally, reasons/reacts partially, and
communicates locally. The importance of this is how it impacts
parallel implementations, and the key properties are the data



communication pattern is local, there is no dependency on the
current time step (only the last time step matters), and the
result of each time step needs to be recorded.

Table I shows a list of tools that were used in our experimen-
tation. Undergraduates and learners who are attempting to be-
come more proficient with parallel implementations should be
familiar with many of the basic NIX and Windows command
line tools as well as how to write, build, execute, and debug
NIX and Windows programs written in C. Even this base of
knowledge with tools, independent of parallel applications, is a
significant body to learn. However, we believe this knowledge
is a minimum requirement to work in traditional computing,
and more and more of this knowledge should be pushed as
early as possible in undergraduate education [24] for computer
engineers.

IV. PARALLEL IMPLEMENTATIONS

We attempted to implement our design for 5 different
acceleration platforms/systems including OpenMP for multiple
CPUs, MPI for multiple CPUs, OpenCL targeting a CPU host
and GPU target device, OpenCL targeting a CPU host and
FPGA target device, and Verilog for an FPGA target device.
All but one of these platforms can be worked on with a base
laptop, which we will describe as our starting constraint.

The laptop used for these experiments, is a Dell Latitude
E6510 from 2010 with a dual core i5 Intel Processor (2.7GHz)
with 4GB of RAM. The GPU is an NVIDIA NVS 3100M with
512MB of memory. The operating system is Windows 10. On
this machine, we have created a virtual machine (with Oracle
VirtualBox) to run Linux machine (Ubuntu) with 4 processors
and 1GB of RAM. These two systems provide the tools and
capabilities to implement 4 of the 5 platforms listed above,
and this device is typical of what undergraduates would have,
noting that many students choose Apple products, which we
have not explored (though virtual machines should not mean
this is a barrier).

Table II shows each of the targeted devices. For each device,
we name the implementation for future usage, describe the
device, languages, machine requirements, challenge of using,
and what type of execution of the system we performed.
The OpenCL targeting a CPU host and FPGA target was the
one platform that was not usable on our platform since the
requirements were beyond our constrained laptop.

A. OpenMP targeting multiple CPUs

The first targeted accelerating device is OpenMP in Linux
[25]. With the four cores available on the virtual Linux
machine the code was written so that the work is shared across
four threads. The grid is duplicated in shared memory for time
step t and t + 1, and there are no dependencies to calculate
the cells state for time step t+ 1 as the neighbour data is all
from time step t.

OpenMP is compiled with gnu gcc tools by linking the
OpenMP library and using defined pragmas for spawning
threads and implementing barriers around the simulation of
each time step t so that the data can be written to the output

file once all of the threads has completed calculations for their
respective cells.

This parallel programming model was easy to get working
for the Linux system, and the original code was modified with
a few changes. The idea of shared memory is not too difficult
to understand for developers, and the biggest challenge for
learners in this domain is the idea of synchronization prim-
itives for memory dependencies. However, the only memory
dependencies for Conway’s game of life is from time step to
time step, which only requires barriers. As is the case in all of
our implementations, debugging parallel applications can be
challenging, but for this application very little debugging was
needed and print statements were sufficient.

B. MPI targeting multiple CPUs

MPI was implemented and tested on the Linux system
using MPICH-1 [26]. We, also, tested our implementation
using MPICH-3, which is not a as simple to setup on a
Linux machine. In general, an MPI application uses specific
calls withing the MPI API to initialize the environment, and
perform communication and synchronization actions. To build
the system a specific compiler is used and the compiled code
is initialized for N processes by a program in the MPICH
environment.

For our MPI implementation, there are 4 processes (can
be more or less) where the process with rank 0 initializes
the grid and is responsible for writing the output of each
time step to an output file. After reading the initial grid,
the rank 0 process messages each of the other processes
with their needed local data, and we partition this based on
allocating contiguous rows to each process. At each time step,
a process sends its’ rightmost and leftmost rows to the proper
process since they will need this data to calculate some of
their neighbour information. Next, each process calculates the
results for the time step and sends their updated cell state to
the rank 0 process. Barriers are used to synchronize time steps
and writing the output data.

MPI provides a low level parallel programming model
where each process needs to explicitly send and receive
data. The ordering of these is fundamental, and some of the
ideas of “blocking” and “non blocking” communication can
be challenging to understand for learners. Getting the MPI
system running on Linux is relatively easy, but debugging the
MPI communication took longer than expected for our simple
application.

C. OpenCL with CPU host targeting GPU

OpenCL is designed to allow heterogeneous acceleration
systems to be created where there might be a mix of CPUs,
GPUs, FPGAs, and other hardware target devices [17]. A num-
ber of steps are required to install the software development kit
and drivers to get the OpenCL framework ready to compile,
and we used Intel documentation, which was very explicit
and useful in the setup. To create an application withing the
OpenCL framework, a number of steps must be taken to setup
a context of the platform and communication between the host



TABLE I
TOOLS USED IN OUR EXPLORATION

Tool Use in this Work OS Cost

vim text editor and code editor NIX Free
gcc C compiler NIX Free
gdb debugger NIX Free

valgrind memory debugging NIX Free
CMake create make files NIX Free
Make make project NIX Free

Linux command line tools basic NIX tools such as: ls, cd, etc. NIX Free
Window command line tools basic Windows tools such as: dir, cd, etc. Windows Purchase

Visual Studio 15 build windows software Windows Purchase
Intel OpenCL sdk compile OpenCL for GPU Windows Free

Intel OpenCL Offline Compiler compile OpenCL kernel Windows Free
Processing create simple graphic tools Windows Free

Github Desktop github interfacing tool Windows Free
Intel’s Quartus Prime Lite (17.0) Building, Simulating FPGA designs Windows Free

Python scripts and simple tools NIX/Windows Free
PDF reader read pdf documentation NIX/Windows Free

TABLE II
DEVICES AND PLATFORMS USED AND REQUIREMENTS

Name Device Language Machine Requirements Challenge Actual Execution

C-imp CPU C Low Low Virtual Machine
OpenMP-imp CPUs C - OpenMP Medium Low Virtual Machine

MPI-imp MPI C - MPICH-1 Medium Medium Virtual Machine
OpenCL-gpu GPU host(CPU) C/C++ - OpenCL High High Real
Verilog-imp Verilog FPGA Verilog Low High Simulated

OpenCL-fpga FPGA host(CPU) C/C++ - OpenCL Very High High None

and heterogeneous devices. Additionally, the kernel code (code
that will execute on the devices) needs to be compiled using a
separate device specific compiler, which can make it difficult
to debug the kernel code. There are a number of introductory
books and example code is available online to help with this
process.

For our implementation, we spawn individual kernel threads
on a GPU for each cell. The host is responsible for synchro-
nization of each time step and writes out all the data to an
output file.

This is a very simple model of execution, but getting our
simple application working in this framework took consider-
able time because of the complicated initialization steps, and
then debugging the application. This was a much more difficult
platform to work with compared to the previous systems,
however, OpenCL is the newest of the systems explored in
this work by at least 10 years. Therefore, in the future if this
platform gains traction, we can expect much more support for
building these types of systems.

D. Verilog targeting an FPGA

FPGA based acceleration is a different approach compared
to all the previous C based fixed target systems with more
traditional parallel programming models. The FPGA is a
reprogrammable chip which can implement general purpose
computation devices such as CPUs, but the hardware can be
tailored exactly for the computation. This means that learners
need to have a significant understanding of digital system

design and how to design applications using Hardware Design
Languages (HDLs) such as Verilog [27]. Not only does a
user need to understand digital design, the platform/tools for
developing, simulating, and programming an FPGA have some
similarity to the programming tools, but have an additional
learning curve. The two most common used platforms are
from Xilinx and Intel, and in our case, we use the freely
available free version of Intel’s Quartus Prime Lite and the
accompanying tutorials.

There are a number of choices to make when the underlying
silicon substrate is a programmable logic array such as an
FPGA. For our application, we chose to make each cell of the
2D grid a Verilog module that includes logic to be initialized,
communicate state, and update state. To make the 2D array of
these cells, we wrote python scripts to automatically generate
the Verilog with direct connections between the cell and its’
neighbours. To observe the state and control the array of cells,
we wrote a control module (as a finite state machine) that
initializes, simulates a step, and reads the state of all the cells.
Finally, we wrote a script in Python to create testbenches
to test the implementation by synthesizing our design for an
Intel Cyclone V FPGA, which is a simple small FPGA, but is
targetable by the Lite software package.

The complexity of this design is not great, but because of the
design environment and knowledge needed to create designs
for FPGAs in Verilog is significantly different from the other
implementations, we consider this process to be “high” in



terms of complexity. Fortunately, digital design is, typically,
part of a computer engineering undergraduate curriculum,
but for other learners with less of these skills this type of
exploration is considered the most challenging to learn in our
exploration.

E. OpenCL with CPU host targeting FPGAs

The last target acceleration system targets FPGAs with
OpenCL that might allow for developers more familiar with C
to still accelerate their designs on an FPGA. This is the newest
platform in terms of development, and at present the basic
requirements to even emulate these systems is far beyond the
capabilities of the laptop we were constrained by. Also, to run
the system, very specific FPGA prototyping boards are needed.
Currently, this type of system is not ready for undergraduates
to learn and experiment with unless they have access to more
advanced systems.

OpenCL targeting FPGAs makes it a High-Level Synthesis
(HLS) language, and there exist a number of competing
languages in this space with the greater goal of C-to-gates.
There are a few languages and IDEs in this space that are
freely available for students, but they typically are tied to
specific development boards. Our attempts with OpenCL were
limited by the capabilities of the laptop. Other languages are
limited by what systems they target. This space is accessible by
undergraduates, but we do not believe this is a easily targetable
learning space for undergraduates on their own. This will,
likely, change in the coming years.

V. BASIC RESULTS

In Table II, we can see from the final column that most of
our implementations are either executed on a virtual machine
or are a simulation. The exception is the OpenCL-gpu design
that is run on the laptop’s hardware. From a benchmarking
perspective, we can not make direct comparison of perfor-
mance between each implementation, and we should note
that we don’t attempt to optimize each implementation for
its’ target platform as this takes significant time, which is
better described in Xilinx’s technical report on creating FPGA
designs [28].

The methodology we use to benchmark our designs focuses
first on determining for each of the systems what is the largest
possible implementation of our benchmark on the target in
terms of the dimensions of the 2D square grid by testing in
increments of 2500 cells in both the X and Y direction. For
all the software approaches this works where the designs can
fit a maximum size of either 7500by7500 or 10000by10000.
We report the FPGA implementation in the text since it is
significantly smaller. In terms of these benchmarks, we vary
the grid size, and we create a benchmark by inserting gliders
(which are oscillating Conway entities) into the benchmark
every 6 by 6 tile within the 2D grid.

Table III shows the results for each of the software imple-
mentations. As stated earlier, the first three rows are for the
benchmark executed on a virtual Ubuntu CPU in C, OpenMP,
and MPI with times measured using clock, omp Wtime, and

mpi Wtime, respectively. The OpenCL-gpu results are mea-
sured directly on the hardware using ftime to measure time.
All times are in milliseconds, and two times are reported where
the first is the total execution time (without initialization), and
the second is the time spent writing the current state to file.

As we discussed, we’re not trying to compare the different
implementations and optimize them, but we see that for
our implementations very little speedup (if any) is gained
from the parallel versions as compared to the single core C
implementation. From a student perspective, this may illustrate
how naive parallel implementations don’t, necessarily, provide
a benefit to the application, and a deeper understanding of
how to structure designs for different parallel paradigms takes
significant effort [28].

The FPGA implementation in Verilog is purely a simulation.
We fit a 100by100 instance of the benchmark on a Cyclone V
(5CSXFC6D6F31C6) where the logic utilization (in ALMs)
is 92% of the chip(38,467 ALMs of 41,910 ALMs) with
23819 registers. This design, however, does not capture full
I/O output to file as the above one and simply outputs the
design via a port on the FPGA. Therefore, this system is not
complete in terms of an application with host and co-processor
capabilities.

VI. LESSONS LEARNED AND APPLICATION TO HPC
EDUCATION

In this case study, we note that the experimenter’s expe-
rience is in Verilog design with brief work on OpenMP in
the early 2000s, and the experience is much more significant
than the average undergraduate. The key lesson, however, is
that students can access parallel programming with only their
computation tools, and there is no need to work on all the
systems described in this paper.

A learning computer engineer should pick a parallelizable
application and implement it on at least one parallel model
and system as described above. We would argue the shared
memory model is the easiest starting point with either OpenMP
or another thread library. Then profiling the application and
attempting to optimize their implementation will give any
learner a significant experience with parallel development.
They can then either attempt to implement the system on a
different parallel model or try another application that has
different characteristics. By accumulating these experiences
the learner will soon become more and more competent with
parallel thinking and design.

We have no evidence that shows these experiences are
the best way to learn about HPC development, but in our
experiences we have not met skilled parallel developers, in
industry or academia, who haven’t learned their programming
skills without practice. This paper shows that students can
access and practice in most leading edge parallel systems,
with the exception of heterogeneous parallel systems and HLS
languages and tools.



TABLE III
TIMES FOR DIFFERENT BENCHMARKS

Name 2500by2500 5000by5000 7500by7500 10000by10000

C-imp 880, 290 3225, 1307 7360, 3408 16494, 8716
OpenMP-imp 849, 317 4252, 1413 11478, 4728 20381, 6622

MPI-imp 741, 466 2576, 1734 23736, 8931 NA
OpenCL-gpu 2960, 399 10051, 1612 23177, 3154 NA

VII. CONCLUSION

Learning HPC design implementation on CPUs, GPUs, and
FPGAs is possible on a traditional laptop. We demonstrated
this with our one off exploration of Conway’s Game of Life
implemented on a number of platforms. This means that
students with enough NIX skills can, likely, build simple naive
applications for these devices to start their learning process,
and courses in this domain do not need specialized equipment
to teach the process. The latest and greatest innovations in
HPC that include heterogeneous mixtures of computational
chips, however, is not accessible to students yet. This is not
surprising as these heterogeneous systems are still on the
cutting edge of technology as of the writing of this paper.
The next step in this work is to understand how to expose and
teach students to optimize their applications.

For a learning student, we suggest trying a similar exercise
as above focusing on a simple algorithm from one of the 13
dwarfs [29] and implementing it on a number of different
architectures. We suggest choosing an N-body problem such
as the million-star simulation.

REFERENCES

[1] J. Impagliazzo and et.al, “Curriculum guidelines for undergraduate
degree programs in computer engineering,” 2016. [On-
line]. Available: https://www.acm.org/binaries/content/assets/education/
ce2016-final-report.pdf

[2] P. Jamieson, A. Sanaullah, and M. Herbordt, “Benchmarking het-
erogeneous hpc systems including reconfigurable fabrics: Community
aspirations for ideal comparisons,” in 2018 IEEE High Performance
extreme Computing Conference (HPEC). IEEE, 2018, pp. 1–6.

[3] M. Gardner, “Mathematical games: The fantastic combinations of john
conways new solitaire game life,” Scientific American, vol. 223, no. 4,
pp. 120–123, 1970.

[4] L. Yang, S. C. Chiu, W.-K. Liao, and M. A. Thomas, “High performance
data clustering: a comparative analysis of performance for gpu, rasc,
mpi, and openmp implementations,” The Journal of supercomputing,
vol. 70, no. 1, pp. 284–300, 2014.

[5] J. Fowers, G. Brown, P. Cooke, and G. Stitt, “A performance and energy
comparison of fpgas, gpus, and multicores for sliding-window applica-
tions,” in Proceedings of the ACM/SIGDA international symposium on
Field Programmable Gate Arrays. ACM, 2012, pp. 47–56.

[6] C. H. Nevison, “Parallel computing in the undergraduate curriculum,”
Computer, vol. 28, no. 12, pp. 51–56, 1995.

[7] R. Brown, E. Shoop, J. Adams, C. Clifton, M. Gardner, M. Haupt, and
P. Hinsbeeck, “Strategies for preparing computer science students for
the multicore world,” in Proceedings of the 2010 ITiCSE working group
reports. ACM, 2010, pp. 97–115.

[8] E. M. Minty and M. Westhead, “Mpi on-line: A teaching environment
for mpi,” in Supercomputing’97, 1997.

[9] Y. Pan, “Teaching parallel programming using both high-level and low-
level languages,” Computational ScienceICCS 2002, pp. 888–897, 2002.

[10] A. Breuer and M. Bader, “Teaching parallel programming models on a
shallow-water code,” in Parallel and Distributed Computing (ISPDC),
2012 11th International Symposium on. IEEE, 2012, pp. 301–308.

[11] D. A. Joiner, P. Gray, T. Murphy, and C. Peck, “Teaching parallel
computing to science faculty: best practices and common pitfalls,” in
Proceedings of the eleventh ACM SIGPLAN symposium on Principles
and practice of parallel programming. ACM, 2006, pp. 239–246.

[12] C. El Amrani, “A learning approach to introducing gpu computing in
undergraduate engineering program,” International Journal of Computer
Applications, vol. 107, no. 20, 2014.

[13] P. Schaumont, “A senior-level course in hardware–software codesign,”
IEEE Transactions on Education, vol. 51, no. 3, pp. 306–311, 2008.

[14] S. Areibi, “A first course in digital design using vhdl and
programmable logic,” in Frontiers in Education Conference, 2001.
31st Annual, vol. 1, 2001, pp. TIC –19–23. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.16.3048

[15] P. Jamieson, L. Grace, B. Zhang, and N. Mizuno, “verilogtown-
improving students learning hardware description language design-
verilog-with a video game,” in 2015 ASEE Annual Conference and
Exposition, 2017.

[16] N. Sultan, “Cloud computing for education: A new dawn?” International
Journal of Information Management, vol. 30, no. 2, pp. 109–116, 2010.

[17] J. E. Stone, D. Gohara, and G. Shi, “Opencl: A parallel programming
standard for heterogeneous computing systems,” Computing in science
& engineering, vol. 12, no. 3, pp. 66–73, 2010.

[18] C. Ivica, J. T. Riley, and C. Shubert, “Starhpcteaching parallel pro-
gramming within elastic compute cloud,” in Information Technology
Interfaces, 2009. ITI’09. Proceedings of the ITI 2009 31st International
Conference on. IEEE, 2009, pp. 353–356.

[19] T. R. Gross, “Breadth in depth: a 1st year introduction to parallel
programming,” in Proceedings of the 42nd ACM technical symposium
on Computer science education. ACM, 2011, pp. 435–440.

[20] B. Rague, “Teaching parallel thinking to the next generation of pro-
grammers,” Journal of Education, Informatics and Cybernetics, vol. 1,
no. 1, pp. 43–48, 2009.

[21] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands,
K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams
et al., “The landscape of parallel computing research: A view from
berkeley,” Tech. Rep., 2006.

[22] A. Sulistio, C. S. Yeo, and R. Buyya, “A taxonomy of computer-
based simulations and its mapping to parallel and distributed systems
simulation tools,” Software: Practice and Experience, vol. 34, no. 7, pp.
653–673, 2004.

[23] L. J. Moya and A. Tolk, “Towards a taxonomy of agents and multi-agent
systems,” in Proceedings of the 2007 spring simulation multiconference-
Volume 2. Society for Computer Simulation International, 2007, pp.
11–18.

[24] P. Jamieson and J. Herdtner, “More missing the boat - arduino, raspberry
pi, and small prototyping boards and engineering education needs them,”
in Frontiers in Education Conference (FIE), 2015. 32614 2015. IEEE.
IEEE, 2015, pp. 1–6.

[25] L. Dagum and R. Menon, “Openmp: an industry standard api for shared-
memory programming,” IEEE computational science and engineering,
vol. 5, no. 1, pp. 46–55, 1998.

[26] E. P. Computing, “A high-performance, portable implementation of the
mpi message passing interface standard,” Parallel Computing, vol. 22,
pp. 789–828, 1996.

[27] Verilog Hardware Description Reference, Open Verilog International,
March 1993.

[28] Xilinx, “Introduction to FPGA Design with Vivado High-Level Synthe-
sis,” Xilinx Inc, Tech. Rep., 2013.

[29] K. Asanovic, R. Bodik, J. Demmel, T. Keaveny, K. Keutzer, J. D.
Kubiatowicz, E. A. Lee, N. Morgan, G. Necula, D. A. Patterson et al.,
“The parallel computing laboratory at uc berkeley: A research agenda
based on the berkeley view,” 2008.


