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Abstract—Supergenes are an addition to a genetic algorithm’s
genome that duplicate genes in the genome, represent local opti-
mizations, and have the potential to be expressed overriding the
duplicated gene. We introduce supergenes in a genetic algorithm
for FPGA placement where a placement algorithm places a mix
of fine-grain components and medium-grain components (where
a medium-grain component is 2 to 10 times the size of a fine-
grain component). This is the first placement algorithm, to our
knowledge, that can deal with such a mix of components on an
FPGA. Our results show that supergenes improve a placement
metric (clock speed of the FPGA) by approximately 10%. We
also show and explore mutation operators on supergenes, and we
experimentally demonstrate that the expression of a supergene
can be effectively controlled via a binary function for our
placement problem.

Keywords—Genetic Algorithms, Supergene, FPGA, Placement,
Granularity

I. INTRODUCTION

Field-Programmable Gate Arrays (FPGAs) are re-
programmable integrated chips (ICs) that can implement
a range of digital circuits. In the process of mapping a
digital circuit to an FPGA, an algorithm, called placement,
attempts to put the elements of a design circuit onto an
FPGA while optimizing a cost function that captures speed
(the rate at which the FPGA can be clocked), area efficiency,
and often, power consumption. This can be achieved with a
number of combinatorial optimization algorithms including
simulated annealing (SA), analytic placers, and evolutionary
algorithms such as genetic algorithms (GAs). The complexity
of the placement problem has resulted in some stagnation
of improvements in both the quality of placement and, most
importantly, run-time [1], and current ideas have focused
on speeding up algorithmic run-time via larger clusters of
circuit elements and parallelization. GAs are well suited for
parallelization, and in this work, we demonstrate how they
can be used for placing small collections of clusters with
fine-grain elements.

Therefore, this work makes contributions to both the study
of GAs and FPGA placement, and additionally, provides and
exposes GA researchers to one of the target applications of
their work. For FPGA placement, we introduce the first im-
plementation of a placement algorithm that can place both fine-
grain individual circuit elements and medium-grain clusterings
of these elements (2 to 10 times the size of the fine-grain)
onto an FPGA. To achieve this and in relation to GA research,
this work introduces a medium-grain gene into the genome
that we, currently, call supergene taken from the biological

term [2]. Supergenes are an additional component of GA’s
genome that are used to duplicate grouping of genes in the
genome, represent this grouping as a local optimization, and
are optionally expressed, which will override the traditional
genes in the genome. Since a circuit element can exist in
both the fine-grain genome and the set of supergenes, a
dominance factor is used to determine which of the conflicting
versions will express itself. In this way, we have created a
GA placement algorithm for fine and medium-grained circuit
elements, and we have introduced a concept of supergenes that
may benefit other combinatorial optimization problems with
the existence of similar local optimizations.

We should note that GAs for FPGA placement still lack
a crossover operator that would make these algorithms com-
parable to other placement algorithms such as SA. Still, as
the search for this crossover operator continues, GA improve-
ments such as supergenes are still of value to investigate
as they should provide additional performance and quality
benefits. Therefore, for our experiments we use both the partial
mapped crossover (PMX) [3] and the confined-swap recombi-
nation (CSR) [4] operators as these are the best demonstrated
crossovers operators for FPGA placement, at present.

Our results show that a GA algorithm with both the CSR
crossover and supergenes improves the speed of the placed
circuits on average by approximately 10% compared to a
GA with the same crossover operator (without supergenes).
Additionally, we find that the dominance factor included in
the supergene is best set to always dominate and express the
supergene when the elements defined as supergenes are of
high-quality. This is the case since the medium-grained clusters
that are included as inputs to the algorithm are definitive good
structures, and therefore, they significantly improve the quality
of the placement. In the case of a GA without supergenes, the
algorithm spends unnecessary time trying to reconstruct the
information pre-encoded in the supergene, and this takes a
number of generations to accomplish when this information is
missing. Supergenes allow an algorithm to explore other, better
solutions. We also investigate how mutating the dominance
factor in a supergene impacts the results by observing the same
GAs that included, potentially, false positive super-clusters
(not necessarily great supergene candidates). This experiment
shows that a supergene GA keeps the majority of good super-
clusters and eliminates the expression of the majority of false
positives.

The remainder of this paper is organized as follows: Section
II describes some FPGA terms and briefly reviews FPGA



placement algorithms, including GAs for FPGA placement,
and section III describes the what the granularity of placement
is and how medium-grained circuit elements are obtained.
Section IV describes the genome, supergene, and GA that is
used for our experiments. Section V describes our experimental
setup, section VI shows the results of these experiments, and
section VII concludes this work.

II. BACKGROUND

In this section, we describe FPGA terminology used in this
paper, algorithms for FPGA placement, previous research on
GAs for FPGA placement, and ideas related to the supergene
for GAs.

A. FPGAs, Software, and FPGA Placement Algorithms
FPGAs are programmable ICs that consist of pro-

grammable logic blocks, called clusters, and programmable
routing [5] where the programmable routing consists of wire
segments that are connected to either logic blocks or other wire
segments via programmable switches. The placement problem,
for these devices, is to place the clusters that make up a digital
circuit such that the critical path (the physically longest path in
the design that determines the clock speed) is minimized, the
power consumption of the programmable routing is minimized,
and the area-efficiency is maximized.

VTR [6] is an open source Computer Aided Design (CAD)
flow that allows researchers to experiment with both the FPGA
architecture and the CAD flow algorithms that maps digital
designs to an architecture including placement. VTR, currently,
uses SA for its placement algorithm.

FPGA placement algorithms try to place hundreds to hun-
dreds of thousands of clusters, representing the digital design,
onto the array of FPGA clusters focusing on optimizing the
critical path, the power consumption, and the area-efficiency.
This problem has been shown to be NP-complete to solve
optimally, and a number of popular algorithms have been
proposed to solve this problem including SA ([7], [5]), min-
cut ([8], [9], [10]), and analytic ([11], [12]) placers. A good
overview of the FPGA placement problem can be found in
Betz et. al. book [5].

When attempting to improve a placement algorithm, the
important metrics to focus on are power consumption, critical
path, and area-efficiency. In this work, we do not consider
power. Critical path, as defined earlier, is a measure of the
longest clocked path in the circuit. This value determines the
maximum clocking speed of the circuit and decreasing the
length of this path is considered to improve the placement
quality of the circuit.

Area-efficiency is a metric that may or may not be ap-
plicable to the placement algorithm. For FPGA researchers
concerned with architecture and CAD, area-efficiency is, par-
tially, manifested in channel width. Channel width, represented
by the variable W, is the number of programmable wires that
exist in the channels in between clusters. For each circuit, we
can find the minimum W for an FPGA that will allow that
circuit to be legally routed. We use W as a quality result since
it reflects information on the area-efficiency of an algorithm in
terms of minimizing the number of wires needed in an FPGA
architecture.

B. GAs for FPGA Placement
Within the Very Large Scale IC (VLSI) domain, GAs have

been applied to a number of CAD problems, and for a more

thorough survey of these problems the reader can refer to
Mazumder and Rudnick [13]. In this work, we are specifically
dealing with GAs for FPGA placement.

Fig. 1. Sample genome for 17 elements on a 5x5 FPGA

Evolutionary programming algorithms have been imple-
mented and explored for FPGA placement, and the first
published attempts were by Venkatraman et. al. [14] in which
they implemented a GA based placer in VPR 4.3 [15] (one of
the predecessor to VTR). In their work, each cluster’s location
on the FPGA array is a gene, and the 2D location of each of
the clusters forms an individuals genome. Figure 1 shows a
fine-grain genome for a design consisting of 17 elements. A
population of these individuals is created and each individual
is evaluated based on a fitness function for speed and area-
efficiency. Within the population, the fittest individuals are kept
and mutated to create the next generation based on propor-
tional representation, which is left undefined by the authors.
Mutations are based on local cluster swaps and global swaps.
Their results show that this algorithm improves the critical
path compared to VPR’s SA algorithm for ten benchmarks.
Unfortunately, there is no analysis of run-times for the two
algorithms (SA and GA), which means the algorithms can not
be fairly compared.

Meng et. al. [16] created an algorithm that combines both
GA and SA algorithms for placement. Their approach claims
that the GA aspect of the algorithm are used to escape local
minimums (as another form of hill climbing) and the SA
is used to quickly improve solutions. The genome for their
approach is the same as the one previously described. They
also use a fine-grain mutation based on swapping clusters, and
they propose a new method for crossbreeding fit individuals.
Their results show similar costs compared to VPR 4.3’s SA
approach with similar run-times.

More, recently, our GA implementations [17] [18] and
work by Collier et. al. [4] [19] has found that GAs for FPGA
placement are not yet comparable to SA implementations
mainly due to the weakness of the crossover operator. Collier
has proposed a CSR crossover operator, which they experi-
mentally show is better than the PMX originally proposed by
Goldberg for the traveling salesman problem [20]. The CSR



as a crossover operator for FPGA placement guarantees that
the off-spring will be similar to at least one of the two parents.

C. Research Related to Supergenes
The idea of supergenes [2] in GAs is that the phenotype

(traits of an individual) emerge based on the interaction
between multiple encodings within the genome. In particular,
in combinatorial optimization problems a supergene defines
the medium-grained behavior of a collection of combinatorial
elements.

Our definition of supergenes is used in the context of
combinatorial optimization problems solved via GAs. This
is a narrow context and the idea has similarities to messy
GAs, the idea of gene expression, and canonical genes. Messy
generic algorithms (MGAs) [21] were introduced in 1989 by
Goldberg et. al. and introduce the idea of variation in both the
information length and the rigidity of the genome, and this
type of GA suggests the possibility of containing supergenes.
Similarly, proportional GAs (arguably a subset of MGAs and
similar to Canonical GAs [22]), as introduced by Wu et.
al. [23], presents the idea of the phenotype of an individual
as an expression of the existence or non-existence of genes
within the genome. PGAs have genomes that allow for more
complex encodings of individuals with less restrictions on strict
formatting. Both MGAs and PGAs are ideas that modify the
way a genome is created and impact the phenotype, and this
relates to gene expression. Gene expression has been studied
by researchers in the area of simulation of biological evolution.
For example, Eggenberger [24] looks at gene expression for
evolution of 3D organisms.

The similarities between supergenes for GAs and a number
of other research directions in evolutionary programming is
evident even with the small sampling we review. Our focus is
to use the supergene as a means to advance GAs for combina-
torial optimization algorithms. As we will describe further, the
supergene has a specific use for the FPGA placement problem.

III. FINE, MEDIUM, AND COURSE GRAIN FPGA
PLACEMENT

FPGA placement, as described earlier, is the process of
placing components of a digital circuit onto an FPGA to
optimize a number of cost metrics. The reality, though, is
that modern FPGAs no longer consist of just clusters, but
can consist of a multitude of architectural features, and the
CAD that targets these devices might perform placement at
various granularity levels. In this section we define these
granularity levels and some of the algorithms and research that
has focused on these. The smallest component of an FPGA,
from a structural perspective, are the clusters, which we will
call fine-grain and are commonly referred to as the soft-logic.

Modern FPGAs consist of clusters and hard circuits such
as hard multipliers, memories, configurable clusters, and pro-
cessors [25], [26]. These hard circuits are included since the
equivalent implementation within the clusters is significant,
and the use of hard structures within digital designs is sig-
nificant enough that the risk of the silicon not being used
is outweighed by the benefits of there existence [27]. Hard
circuits are, also, fine-grain elements of the FPGA and can
be incorporated into placement algorithms such as SA and
GA since they have distinct placement locations and this
aspect of the problem can be dealt with in conjunction with
the placement of clusters; for example, VTR can place hard
circuits and clusters at the same time. This placement might

be called heterogeneous placement since the fabric does not
consist of only one type of structure, but it is not heterogeneous
placement with respect to the size of the elements being placed.

Course-grain placement is on the opposite side of the spec-
trum of placers, and we define it as the placement of a large
collection of homogeneous or heterogeneous elements. For
example, a digital circuit might consist of two large separate
parts called Intellectual Property (IP) blocks. IP blocks can be
purchased from vendors and allow designers to quickly imple-
ment complex functionality, and an IP block might consist of
upward of thousands of clusters and hard circuits. In addition
to IP blocks, coarse-grain placement manifests itself via both
design partitioning [28] and incremental placement [29]. In
all cases, the coarse-grain placement algorithms deals with
first placing large coarse-grain blocks, similar to IP blocks,
and then performing local placement within the coarse-grain
blocks (fine-grain placement). A common approach to coarse-
grain placement that deals with the coarse-grain placement is
with floorplanning algorithms [30] [31] including GA attempts
at floorplanning [32].

This work focuses on what we call heterogeneous medium-
grained and fine-grained placement. Medium-grained struc-
tures are small collections of clusters (between 2 and 10)
that are known to be strongly related to one another and
should be placed in close proximity to each other on the
FPGA. Our terminology for these medium-grained structures
is super-clusters [33], which relates to our choice of using
the term supergenes. Medium-grained placement would be no
different than fine-grain placement if we could completely
partition the entire design into the same sized super-clusters
that could be placed in grid-like manner, but our research
has found that there is only a small percentage of fine-grain
clusters that can be organized into super-clusters and these
super-clusters can vary in size (how many clusters are included
in each). Therefore, a placement algorithm for super-clusters
mixed with cluster needs to deal with this mix of medium-grain
and fine-grain structures. This is a significant challenge where
both fine and medium-grain structures can occupy the same
places on the FPGA and will impact one another in terms of
optimizing the cost function. In the VLSI domain, this problem
is sometimes referred to as, ”boulder and dust” [?].

A. Finding Medium-Grained Super-clusters
One important question is how are super-clusters extracted

from a digital circuit. Our preliminary work [33] describes
clustering methods that can find these medium-grained struc-
tures during the CAD flow. However, our current findings
suggest that these methods do not find high quality super-
clusters. For this work, we use super-clusters that are extracted
in a, as yet, not described process. Since this is not the main
contribution of this work, we simply state that the super-
clusters used in this work are high quality super-clusters that
range in size from 2 to 10 clusters. We have confirmed that
these super-clusters are of high-quality by running experiments
with them that show that not placing the clusters in a super-
cluster in close proximity to one another will cause significant
increases in critical path delay and area-efficiency costs.

IV. SUPERGENES FOR MEDIUM AND FINE GRAIN

PLACEMENT

In this section, we provide details of the GA for medium
and fine-grain placement including the changes to the genome.



A. GA for Placement
Our GA for FPGA placement consists of a number of

parameters and features that have been developed over a
number of years. The GA has the following features:

• Inbreeding Avoidance: Our GA avoids crossbreeding
similar individuals by maintaining a history of ances-
tors five generations back and not breeding with shared
ancestors [34] [35]. For combinatorial optimization
problems this is maintained via recording ancestors
and is derived from ideas in Tabu search [36] and
CHC [37].

• PMX or CRS: The crossbreeding operator is one of
PMX [20] or CSR [4] and the ideas of these crossover
operators are explained with graphs and algorithms in
Collier et. al. [4]

• Probability of Mutation: Mutations are probabilisti-
cally accepted based on an improvement to the quality
of the placement as taken SA FPGA placement [5].

• New Generations: Parents and children combined to-
gether in competition for new generations where ten
percent of the parents are maintained [37].

Beyond these characteristics, the population size is 500 in-
dividuals per generation, 50 percent of the genes are randomly
mutated, and 90 percent of the new generation of individuals
are created from crossbreeding and mutation (meaning 10
percent of the population comes from the best of the previous
generation). We will describe a number of additional parame-
ters as related to supergenes.

B. FPGA Genome Including Supergenes
The FPGA genome for the fine-grain clusters is as previ-

ously shown in Figure 1. In this genome the location of each
cluster is described as a location on the FPGA, and this allows
for easy mapping to the fabric to evaluate the cost function for
an individual’s placement. Note that only clusters are included
in the genome and we do not consider hard circuits, but to
include these types of elements would be a minor algorithmic
change.

To include the medium-grain clusters or super-clusters in
the genome, we add supergenes. A supergene has the following
properties:

• Size: The number of fine-grain genes contained in a
supergene

• Internal Genes: A collection of genes in the supergene
and properties of these genes

• Supergene details: Specific characteristics or details of
the supergene

• Dominance factor: A function defining if the super-
gene will express itself over other genes

In the case of FPGA placement problem, the supergene has
a size relative to the size of a super-cluster instance and the
genes in the supergene are the clusters contained in the super-
cluster with additional details of each genes relative x and y
coordinates in relation to the x and y location of a supergene.
For a specific individual, if a supergene expresses itself the
locations of the clusters in the supergene will take precedence
over the information contained in the fine-grain genome. Any
genomes in the fine-grain genome that would map to the
locations now occupied by the supergene are remapped in the
same method as in the PMX crossover.

Figure 2 shows an example of a genome (extended from
Figure 1) with two supergenes that have expressed themselves

Fig. 2. A genome that includes expressed supergenes and appropriate remap-
ping.

(note that the bottom left corner corresponds to the coordinates
0, 0 and the upper right is 4, 4). The placement points are
colored white for fine-grain clusters, grey for super-clusters,
and black if the location is not used. In particular, note how
clusters 11 and 8 are remapped to a different location because
of the supergene precedence. To achieve this remapping the
PMX approach is used where a conflict is detected and the
already placed supergene cluster’s coordinates are used for the
remapping. For example, in Figure 2 cluster 16 is already at
coordinates (1,2), which cluster 11 is currently assigned in the
fine-grain genome. We remap 11 to coordinates (1,1) as this
is the coordinates of 16 in the fine-grain genome. Multiple
conflicts will iterate through this remapping procedure guar-
anteeing that each cluster will have a unique location.

C. Operators and Research Aspects of Supergenes
There are four aspects of supergenes that can be experi-

mented with and in the paper we treat them as follows:

• Gene Expression: There are different methods for a su-
pergene to express itself. We use a binary dominance
factor.

• Supergene Mutation: What and how to mutate the
supergene including the dominance factor, the global
relative information of the supergene, and the internal
details of the supergene. We experimentally try muta-
tions on each of these factors.

• Supergene Crossbreeding: What and how to cross-
breed supergenes in different individuals. We do not
study this in this paper.

• Expression Conflict Remapping: How to deal with
conflicts between expressed supergenes and the
genome to remap the collisions. We use a PMX
remapping technique.

We only mutate supergenes, and when a new individual
is created from crossbreeding of two fine-grain parents, we
randomly pick one of the parents to pass on their supergenes



to the new individual. There are a number of imaginable
crossover operators to use instead of this approach, but we
leave this as future research since the idea of the crossover
operator remains the crux of GAs for FPGA placement.

Mutating the supergene encompasses a number of options
as described above. In particular, we can mutate the global
supergene location (called a global mutation), the relative gene
locations in the supergene (called a local mutation), and the
dominance factor. Our dominance factor is a binary decision
that is set to either on or off. Experimentally, we have found
that mutating the global and relative positions produces faster
improvements in results, but the dominance factor is best
set to on. Because the super-clusters in the experiments are
almost guaranteed to benefit the final placement when placed
in proximity, their is no benefit to mutating this self-expression
off unless there is a higher chance that the supergene will not
benefit the final placement. We explore this idea further in the
results section.

V. EXPERIMENTAL SETUP

For the experiments and results that we will present in the
next section, there are a number of items we describe as related
to the methodology for FPGA CAD experiments. We describe
these details so that FPGA focused researchers can understand
the environment under which the experiments were run, and
GA focused researchers understand why the experimental
methodology might differ from their expected methodology.
In either case, the goal of the experiments are to demonstrate
that supergenes can be used to implement an algorithm for
medium and fine-grain FPGA placement, this implementation
is well suited for GAs, and the supergene concept improves
on the current state-of-the-art GAs for FPGA placement. We
remind the reader that even though this approach improves the
algorithm, the GA for FPGA placement is significantly worse
than, for example, SA for FPGA placement. This disparity is,
likely, due to the lack of a good crossover operator in this
domain.

For this experimental setup the details that we describe are:

1) The software framework that the algorithm is imple-
mented in and the benchmarks circuits used

2) The architectural parameters describing the FPGA we
are placing the benchmarks on

3) The computation system and conditions under which
the algorithms are executed

A. Software Framework and Benchmarks for FPGA CAD
As described earlier, VTR is an open-source academic

tool that allows researchers to experiment with both FPGA
architecture and CAD [6]. For these experiments we are
using an internal version of VPR 5.0 that includes power
estimation. In the experiments the power estimation and the
power component of the cost functions (during various points
of in the CAD flow) is turned off. This is done because the
super-clusters, which are included in the supergene GA, were
obtained in a non-power based flow. The remainder of the
tool includes addition of GAs, which is optionally turned on
to replace the SA algorithm for placement.

Our experiments are run using 10 benchmarks where these
benchmarks have been converted to a netlist of clusters using
an academic CAD flow. Table I shows a summary of the
details of these benchmarks. Column 1 lists the benchmark
name. Columns 2, 3 and 4 show the grid size of the FPGA,

TABLE I. DETAILS FOR THE BENCHMARKS INCLUDING

SUPER-CLUSTERS

Benchmark Grid # of # of # of
Size Clusters IOs Super-clusters

cfc8 11x11 110 51 5
dconvert 22x22 396 258 39

desa 16x16 229 190 1
dsystemC 20x20 393 162 22

iir1 11x11 118 58 13
pajf 10x10 88 103 1
rsd1 14x14 171 20 5
rsd2 20x20 370 32 8
sv3 7x7 46 40 4

synth 14 46x46 521 544 11

the number of clusters, and the number of I/Os. Column 5
shows the number of super-clusters in the benchmark where
the maximum number of clusters in a super-cluster is 3.

Each benchmark is passed into VPR 5.0 for the same
FPGA architecture as described below. VPR 5.0 uses one
of the placement algorithms and then routes the design. The
output of VPR 5.0 is the size of the FPGA (the same for
each benchmark regardless of placement algorithm), the speed
of the circuit in terms of the time delay for the critical path,
and the channel width needed to route the circuit increased by
20% (as a relaxation on the circuit modeling real-world device
usage).

B. Architectural and CAD parameters
The FPGA architecture and CAD parameters that describe

both the FPGA and the CAD flow are shown in Table II. For
a more detailed explanation of these parameters please consult
[5], but for the sake of space and unnecessary details, we
do not describe these parameters in detail here. Of particular
importance to these experiments is the fixed I/O (input and
outputs), which means that for every execution the pins that
provide input and output values are always in the same location
on the perimeter of the chip.

C. Computational Framework and Methodology
Our experiments are run on a Linux OS running on Intel

Xeon 2.4 Ghz cores. For the placement portion of the algorithm
there is no contention in the system. For the routing portion of
the circuit, which includes a binary search to find the minimum
channel width, all four cores are run in parallel to speed up
this computationally heavy process. This has no impact on the
results.

Finally, in combinatorial optimization experiments (includ-
ing many CAD algorithms) the approaches are impacted by
initial random seed. To eliminate some of the noise in these
experiments we use a number of runs to average out the results.
In the experiments, we use ten random seeds for each case and
average these using the geometric mean, which is a normal
procedure in CAD experiments. Any summary results across
a range of benchmarks will also include a geometric mean.

VI. RESULTS

In this section we show the results from two experiments.
First, we show how the supergene GAs compare to GAs with
the PMX crossover operator, the CSR crossover operator, and
a GA with no crossover operator. In this experiment, the
dominance factor of whether a supergene expresses itself is set
to always on (meaning the supergene always expresses itself).



TABLE II. THE FPGA ARCHITECTURAL AND CAD PARAMETERS

Architecture CAD

Parameter W N K Fcin Fcout Fs routing transistor sizing timing factor fixed I/O

Value 20% larger than minimum 10 5 0.18 0.1 3 uni-directional 27mwt 0.5 TRUE

The reason for this is, experimentally, we observed that super-
clusters always benefit the GA. To observe the potential value
of the dominance factor, the second experiment doubles the
number of super-clusters by introducing false positive super-
clusters, and the experiment shows how the supergenes evolve
to deal with these false positives.

A. Algorithm Comparison with and without Supergene Muta-
tions

In this experiment, we observe how each of the GAs
compare with and without supergenes. Each GA has the same
number of individuals in the population for each generation,
the mutation rate is kept the same, and the number of gen-
erations is set to fifty. The only change in the algorithms is
which crossover operator is used (PMX or CSR) on the fine-
grain clusters, and if supergenes are used and mutated locally
(coarse i) or both locally and globally (coarse ii).

Both Figures 3 and 4 show the normalized results for
all of the algorithms compared to a GA that only uses a
mutation operator and no crossover operator, and this is done
to normalize the results. In both of these graphs, the x-axis
includes each of the benchmarks and a geometrically averaged
results of all benchmarks, and the y-axis is a normalized result
compared against a GA with no crossover or supergene. The
algorithms as described in the legend are:

• csr: represents the CSR crossover operator, super-
genes, No global supergene mutations, and No local
supergene mutations

• coarse icsr: represents the CSR crossover operator,
supergenes, global supergene mutations, and No local
supergene mutations

• coarse iicsr: represents the CSR crossover operator,
supergenes, global supergene mutations, and local
supergene mutations

• pmx: represents the PMX crossover operator, super-
genes, No global supergene mutations, and No local
supergene mutations

• coarse ipmx: represents the PMX crossover operator,
supergenes, global supergene mutations, and No local
supergene mutations

• coarse iipmx: represents the PMX crossover operator,
supergenes, global supergene mutations, and local
supergene mutations

In general, we observe that the channel width and critical
path results are all improved by GA algorithms with crossover
operators. There is one outlier in the channel width results
for the coarse icsr algorithm. Also, the GAs with supergene
mutations at both the global and local level (coarse ii) generate
the best results compared to their respective crossover opera-
tors with the exception of the channel width results generated
by the GA with PMX crossover (pmx). In this case, the pmx
algorithm has better channel width results than all algorithms,
but we hypothesize that this is the case of a trade-off that
results in significantly worse critical path results.

The best result is a GA with supergenes mutated locally
and globally has approximately 10% better critical path results

and 4% better channel width results for the CSR crossover
operators compared to a GA with CSR only. This result shows
that the first ever medium-grain and fine-grain GA for FPGA
placement improves previous GAs for placement.

B. Dominance Mutations in the Supergene
In the previous experiment, the mutation of the dominance

factor (whether a supergene will express itself or not) was
turned off. This was done based on experimental results that
suggested that the super-clusters used in the above experi-
ments, were always beneficial to keep. In this experiment, we
increase the number of super-clusters by introducing potential
false positives, and observe how many super-clusters are kept
for the final best solution.

To introduce false positives, we do not simply introduce
random super-clusters. Instead, we randomly select group-
ings (local placement) of clusters after SA has completed
placement, and therefore, in theory, these super-clusters are
reasonable super-clusters candidates, but they are not found as
definitive good super-clusters. This set of good and possibly
good super-clusters is what we use to evaluate if a supergenes
dominance mutation will determine which supergenes to ex-
press.

TABLE III. RESULTS FOR AVERAGE NUMBER OF SUPERGENES

EXPRESSED

Benchmark # of total Supergenes Extra Supergenes
Supergenes Expressed Expressed

cfc8 10 9.34 0.53
dconvert 78 72.16 7.37

desa 2 1.80 0.20
dsystemC 44 40.68 5.03

iir1 26 23.17 1.89
pajf 2 2.00 0.40
rsd1 10 9.31 0.51
rsd2 16 14.74 1.23
sv3 8 5.39 2.28

synth 14 22 9.52 1.33

Table III shows the results from the experiment. Column 1
shows the benchmark, and column 2 shows the total number of
super-clusters (double the value of super-clusters in Table I).
Columns 3 and 4 show the number of original supergenes and
extra supergenes expressed in the final, best individual. Our
hypothesis is that most of the original, good supergenes will
be expressed, and the extra supergenes will not be expressed
as the genome evolves. The results show that this is the case,
and the dominance mutation in the supergene works well in
removing false positives. In some cases, some of the false
positives are expressed, and this suggests that there is either
more work to be done on making a more sophisticated operator
on dominance or that due to the fact that the GA is far
from good quality that these anomalies are normal in the
current optimization point that GAs are achieving for FPGA
placement.
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Fig. 3. A comparison of Channel Width results for all the GAs normalized against a mutation only GA
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Fig. 4. A comparison of Critical Path results for all the GAs normalized against a mutation only GA

VII. CONCLUSIONS AND FUTURE WORK

In this work, we introduced a GA for medium and fine-
grain FPGA placement by including and experimenting with
supergenes. Supergenes duplicate information in the genome,
represent local improvements based on known information, and
have the potential to be expressed instead of traditional genome
information. We describe how supergenes can be used for
the FPGA placement problem and the evolutionary operations
performed on supergenes.

Our results show that supergenes improve the critical path
results generated by a GA with CSR crossover operator by
10% over a GA without supergenes and the same crossover
operator. We investigated the impact the different GAs had on
channel width noting that there are some cases that supergenes

did not improve the results, but this was not the case for
the best GA with supergenes. Additionally, we investigated
how mutating the dominance factor in a supergene impacts
the expression of false positive super-clusters (not necessarily
great supergene candidates), and this experiment showed that
the GA kept the majority of good super-clusters and eliminated
the expression of the majority of false positives.

Still GAs for FPGA placement are far from generating
results as good as those generated by SA and other placement
algorithms. The supergene improves the results, but there still
lacks a crossover operator that can push GAs for FPGA
placement forward and benefit from the easy parallelization of
GAs. Therefore, concepts such as supergenes will make GAs
better and GAs for FPGA placement better, but the majority of



our future focus will be on finding better crossover functions
within this application domain.
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