

Improving the Area-Efficiency of FPGAs with Shadow Clusters

Peter Jamieson and Jonathan Rose

University of Toronto

Why Do We Care About Area-Efficiency?

- Didn't we finish worrying about that a while ago?
- Recall:
 - FPGA conquer ASIC
 - The GAP between FPGAs & ASICS

35x area, 4x speed, 10x power

Making FPGAs Better – Area = Cost

One Way to Improve Area-Efficiency

USE Dedicated hard

circuits:

- e.g. multiplier tile
- e.g memory block tile
- 22x Area Gap

Hard Circuits

• Why not add more hard circuits?

"Should add circuit **X** to FPGA since it would be useful to me!"

- Quote from Novice Architect

 Need a scientific way to make the decision of what to include as a hard circuit

Conditions to Add a Hard Circuit

- 1. Hard circuit provides a benefit
 - Area, Speed, Power consumption, or mix
- 2. Significant portion of FPGA Market uses that hard circuit

Hard Circuit: Good or Bad

- If anot cisedits provide
 benefiste Area for Hard
 Cinnefiste nused
 - Routing resources wasted!!!
 - 70-90% of FPGA area occupied by routing

₩**₩₩₩₽₩₽₽₽**₽₽₩₽₩₽₩₽₽₽

Shadow Clusters: New Idea

Combine with soft
 logic

```
SHADOW CLUSTER
```


The Gain

- Tile always used no wasted routing
- In the multiplier case...
 - 42% area for Routing!!!

Today

- Scientific method to measure areaefficiency of hard circuits
- Measure area-efficiency improvement of architecture with shadow cluster

How many hard circuits?

FPGA Architecture's Supply Ratio: R_S

hard circuit tiles : # soft logic cluster tiles

Example: $R_s = 1:2$

Industrial Multiplier Supply Ratios

FPGA	Stratix I	Stratix II	Virtex II	Virtex 4 (SX)	Virtex 4 (FX)	Virtex 4 (LX)
Supply Ratio	1:66	1:45	1:23	1:15	1:60	1:104

- More asized poly 8x/183 greater ation and 10
- SUB-Falking fers try to match supply to markets
 - Virtex4 and 5
 - StratixIII

Circuits Demand

• <u>User Circuit's</u> Demand Ratio: R_D

hard circuit tiles : # soft logic cluster tiles

Assumes all hard circuits in the circuit can map to hard circuit on FPGA

- Depends on relation between supply and demand
 - -2 Cases

Mapping Design to an FPGA

- Step by Step mapping
 - Design
 - R_D = 1:5
 - FPGA

Case 1 – Demand >= Supply

• Supply Ratio: 1 mult. for every 4 soft logic clusters

FPGA

Every tile employed for primary purpose
Shadow Concept Loses!

Here, shadow cluster FPGA wins!!!

Question

• Depending on how often Case 1 and 2 happens, will win or lose.

How much do shadow clusters improve area-efficiency of FPGAs?

<u>الْجَاجَ الْجَاجَ ال</u>

Measurement Methodology

Empirical

- 1. Map Benchmarks to tiles on FPGA
- 2. Calculate Area

<u>ĸŧĸŧŧŧŧŧŧŧŧŧŧŧŧ</u>

Tile Area

- Key to our measurement
- Soft Logic Cluster Tile
 - Our own tool
- Multiplier
 - Mapped to standard cells

Relative Tile Area - Multipliers

Tile Type	BLEs	Multiplier	Routing	Relative size / tile
Cluster	13%	-	87%	1.0
Multiplier 18x18	-	55%	45%	3.8
Multiplier 18x18 + Shadow Cluster	6%	52%	42%	4.0

Benchmarks

- 27 existing benchmarks
 Avg. Demand Ratio = 1:8
- For statistical study we use synthetic benchmarks

Benchmarks Demand Ratio Distribution

▶ Avg. Demand = 1:8 – Very high

23

Name	Num Bmarks.	Avg Demand	BLE Range	Mult. Range
B8	27	1:8	10542 to 34379	0 to 528
SB45	250	1:45	10000 to 25000	0 to 145
SB15_V2	250	1:15	10000 to 25000	0 to 350

• Each benchmark area ratio

Area_{FPGA with mults}

Area_{FPGA with mults+shadow}

- ">1" means Shadow Cluster Architecture smaller

- Geometrically average area ratios
 - For each benchmark in suite

- Shows how shadow clusters affect each benchmark
 - SB15
 - 10 benchmarks

= =

Results

# Soft	#Multinliers	Demand	Ar	ea	Area-
Logic Clusters	(18x18)	Ratio	No Shadow Clusters	Shadow Clusters	Efficiency Ratio
1849	0	0	170	152	1.118
1638	0	0	151	135	1.086
1420	0	0	131	117	1.119
1042	0	0	96	87	1.110
1904	0	0	174	156	1.115
1924	89	1:21.6	175	171	1.023
1523	141	1:10.8	204	207	0.986
1309	121	1:10.8	175	177	0.986
1528	284	1:5.4	411	417	0.986
1502	349	1:4.3	506	513	0.986
		Average: 1:15			Average: 1.054

Experiment 2: Best Shadow and Non-Shadow Architecture

- Allow the supply ratio to vary
- Map benchmark suites to
 - Shadow

- Non-Shadow

- Compare both shadow and non-shadow
 base_non_15 = non-shadow, supply = 1:15
- Area ratio per benchmark

Area_{base_non_15} Area_{experimental architecture}

Best Non-Shadow Architecture

Best Non-Shadow Architecture Supply = 1:13

Best Shadow Architecture

Best Shadow Architecture Supply = 1:11

• Lets look at a few benchmarks suites

Benchmark Name	Non-shadow supply ratio	Shadow supply ratio	Non Shadow vs Shadow area
B8	1:11	1:9	12.5%
SB15_V2	1:13	1:11	7.2%
SB45	1:28	1:19	4.6%

General Conclusions

- Shadow Cluster improve area-efficiency of FPGAs
 - Existing hard circuits (multiplier)
- 12.5% Improvement with Shadow Clusters
- Never lose

Future Work

- Crossbar work
 - Can we add them now?
- Multiple hard circuits